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ABSTRACT
We present a novel non-parametric method for find-

ing a subspace of stimulus features that contains all

information about the response of a system. Our

method generalizes similar approaches to this prob-

lem such as spike triggered average, spike triggered

covariance, or maximally informative dimensions. In-

stead of maximizing the information between features

and responses directly, we minimize the information

between non-informative features and the pair of in-

formative features and system responses. This has

the advantage that we can use certain integral proba-

bility metrics that are computationally much more fea-

sible than mutual information estimation. Estimators

of these metrics are (i) easy to compute and (ii) ex-

hibit good theoretical convergence properties which

are independent of the dimensionality of the data. For

that reason, our method can be easily generalized to

populations of neurons or spike patterns. By using a

particular expansion of the mutual information, we can

show that the informative features must contain all in-

formation if we can make the un-informative features

independent of the rest.

GENERAL GOAL

informative feature

un-informative feature

spike

no spike

Goal: Find orthogonal matrixQ that decomposes the
stimulus X into features

(U,V)
>

= QX

that are informative and un-informative about the re-
sponses Y, respectively.

Approach: Minimize the information between un-
informative features and the responses. Thus, the in-
formative features should carry all the information.

Generalization: The responses Y are not limited to
single spike responses. Therefore, our approach can
be sensible to correlations between successive spikes
or population responses and generalizes spike trig-
gered techniques and maximally informative dimen-
sions.

WHY UN-INFORMATIVE FEATURES?
Direct estimation infeasible: Finding informative
features U = QUX via direct estimation of the mu-
tual information

I [U : Y] = DKL [p (U,Y) ‖p (U) p (Y)]

between U and the responses Y is computationally
expensive or infeasible because every new choice of
QU requires the re-estimation of I [U : Y].

Alternative measures: Maximum mean discrep-
ancy (MMD) metrics based on characteristic repro-
ducing kernels k with associated RKHSH provide a
different class of divergences between two distribu-
tions

γ
2
H (p (Z1) , p (Z2)) = ‖E [k (·,Z1)]− E [k (·,Z2)]‖2H

can be computed easily by averaging over kernel
matrices. They are a special case of integral proba-
bility metrics (IPMs)

γF [Z1 : Z2] = sup
f∈F
|E [f (Z1)]− E [f (Z2)]| .

The empirical estimation of MMD can be shown
to converge in O

(
1/
√
m
)

(independent of dimen-
sions, m number of data points).

IPMs and mutual information coincide only
at the minimum: IPMs are different from φ-
divergences like the Kullback-Leibler divergence
DKL which the mutual information I is a spe-
cial case of. This means that maximization of
γ2
H [p(Y,U), p(Y) p (U)] potentially leads to dif-

ferent results than maximization of I [U : Y].
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However, they share the same minimum:

γF (Z1 : Z2) = 0⇔ DKL [Z1 : Z2] = 0.

This means that only completely uninformative fea-
tures in γ2

H are also uninformative in I since I =
γ = 0 links them. For that reason we minimize the
information in γ2

H (see Box Decomposition of Infor-
mation)

DECOMPOSITION OF INFORMATION

Direct approach: If Q ∈ SO(n) and (U,V)> =
QX the mutual information between stimuli X and re-
sponses Y can be decomposed into

I [Y : X] = I [Y : V] + EV [I [Y|V : U|V]] .

For maximally informative features one could either
maximize I [Y : V] (hard or infeasible) or minimize
EV [I [Y|V : U|V]].

Our approach: Minimize

I [Y,U : V] = I [Y : X] + I [U : V]− I [Y : U]

because

I [Y,U : V] = 0 implies I [Y : X] = I [Y : U]

and U carries all information about Y.

IMPLEMENTATION
Objective: Use Hilbert-Schmidt Independence Cri-
terion (HSIC)

minimizeQγ̂
2
hs = minimizeQ

tr (K1HK2H)

(m− 1)2

where K1 and K2 denote the matrices of pairwise
kernel values between the data sets {(ui,yi)}mi=1

and {vi}mi=1, respectively, and Hij = δij −m−1.

Kernel: Use RBF kernels

k (z1, z2) = exp

(
−
‖z1 − z2‖22

λ2

)
,

where zi denotes either vi or (ui ⊗ yi) = uiy
>
i .

Efficiency: Use incomplete Cholesky decomposi-
tion to compute low-rank approximations of K1 and
K2 and evaluate γ2

hs efficiently.

RELATED WORK
Spike triggered covariance takes eigenvectors
with largest absolute values of

C
X|spike − CX ,

where C
X|spike and CX are the covariance of the

spike-triggered ensemble and the stimulus, respec-
tively. It cannot find a subspace for the toy example
in General Goal since C

X|spike − CX = 0 in that
case.
Maximally informative dimensions directly maxi-
mizes

Ispike = DKL

[
p
(
v
>
s|spike

)
‖p
(
v
>
s
)]

The generalization to spike patterns or population
responses $1, ..., $` would be I

[
v>s : $

]
=∑

i p ($i) · I$i
.

Kernel dimension reduction in regression mini-
mizes EU [I [Y|U : V|U]] (via IPMs) with kernels.
It makes less restrictive assumptions, but it needs to
invert a large kernel matrix and cannot easily gener-
ate a null distribution via shuffling.

RESULTS
Insets show Null-distributions of γ̂2

hs obtained via shuf-
fling (ui,yi) pairs vs. vi across trials. Stimulus distri-
butions are white Gaussian noise (all toy examples) or
band-pass filtered Gaussian noise (P-Unit).

LNP neuron and 2-state neuron
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Left: Informative dimension of LID trained on sim-
ple linear nonlinear Poisson (LNP) neuron yi ∼
Poisson

(
b〈w,xi〉 − θc+

)
with an exponentially de-

caying filter and a rectifying non-linearity.

Right: Informative dimensions of LID trained on a
simulated neuron with two states that were both at-
tained in 50% of the trials. Stationary state: four output
bins are drawn from an LNP neuron with exponentially
decaying filter. Burst state: first two bins are drawn
from Poisson distribution with a fixed base rate inde-
pendent of the stimulus and the second two bins are
drawn from an LNP neuron with a modulated exponen-
tial filter and higher gain

Artificial complex cell
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Informative dimensions of LID trained on the response
of an artificial complex cell simulated by sampling re-
sponses from a Poisson distribution with its rate given
by λi = 〈w1,xi〉2 + 〈w2,xi〉2, where w1 and w2

are quadrature pair filters.

P-Unit recordings from weakly electric fish
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A random filter (blue trace) exhibits γ̂2
hs values that are

clearly outside the domain of the null distribution (left
inset). Red trace depicts the spike triggered average,
the black trace is the feature found by LID.


