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Learning the generative model under NSH
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• We learn  on the recorded dataset by maximizing the likelihood of datap (x, r)

θ * = arg maxθ

N

∏
i

{p (xi |ri; θ) ⋅ p (ri; θ)}

Our goal: Fitting NSH in a data-driven manner
• Assuming NSH, learn the generative model directly from a dataset of 

the neuronal responses to naturalistic visual stimuli 
• Use flexible, deep learning-based generative models to fit data best 

while minimizing model bias prevalent in classical NSH works

• Establish quantitative evaluation and comparison of different NSH 

generative models, and to SOTA models in system identification

• This equivalence allows us to hence learn  by learning  p (x, z) p (x, r)

• Dataset of natural 
images and responses: 
{xi, ri}N

i=1

• We model  using a deep normalizing flow for each neuron: p (r)
p (r) = " (ℱϕ (r) |0, I) ⋅ det

∂ℱϕ(r)
∂r

• We model  as p (x |r) p (x |r) = " (x |μ = gθ (r), σ2 = hθ (r))

where  is the parameter of the generative modelθ

†

† †

†  is a series of invertible transformations   †  and  are multilayer perceptrons (MLP)ℱϕ gθ hθ

†

Ongoing and future work
• Extend approximate posterior to be more flexible (flow-based)

• Fit models on data from different areas (V4) and different animals (mouse V1)

Probabilistic Perception: Bayesian Brain Hypothesis

Neural Sampling Hypothesis:  
A neural basis of probabilistic perception  

• Our sensory world is riddled with 
uncertainty 


• Optimal perception ought to consider 
uncertainty

Bayesian Brain Hypothesis: Brains perform perception probabilistically by 
combining stimulus-based likelihood and prior knowledge to obtain the 
posterior distribution

z
Latent Stimulus Response

p (z) p (x |z) p (r |x)

The Rubin Vase 
illusion: 

Two faces or a 
vase?
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• NSH posits that neuronal responses  are samples from posterior 
distribution over latent  given stimulus :  

r
z x p (z |x)

p (z |x) p (r |x)

Central challenge: identifying the generative model over stimulus , 
specifically, identifying  and  employed by the brain

p (x, z)
p (z) p (x |z)

x r

• We fit the classical as well as our 
flexible models


• The fits let us compute exact log 
likelihood scores, that allows us to 
rigorously compare normative 
hypotheses


Fitting generative model  on V1 spike counts 
from population recordings

p (x, r)

• We obtained V1 population spike counts to natural images (ImageNet 
dataset) recorded from awake Macaques using 32-channel (NeuroNexus) 
arrays. 


• Each image was presented for 120 ms and we extracted spike counts 
from 40 ms to 160 ms after the image onset.

•  It follows that  ought to match p (r |x) p (z |x)

Likelihood

Prior 
Posterior

xr

• We formulate NSH as positing the density equivalence  pr|x = pz|x
d

Formalization of NSH

• We can thereby derive the equivalence between marginals  pr = pz
d

• NSH establishes a one-to-one correspondence between  and , yielding:z r

• It is assumed then that each neuron encodes a latent variable underlying the 
stimulus 

p (r) p (x |r)≡ p (z) ≡ p (x |z)

Each is a generative model 
consisting of “Prior + Likelihood”

Getting image conditioned neuron-specific predictions 
via variational inference, and system identification

xr
q (r |x)

NSH generative models

• Approximate posterior 
using a Gamma distribution 
and an MLP amortized 
inference function


• Enables comparison to 
SOTA system identification


• Enables neuron-specific 
predictions from normative 
theory


SOTA system 
identification 

models

Simulations on model images and neurons
We simulated pairs of images and 
responses under 


• Hoyer & Hyvärinen model 
(HNH)


• Olshausen & Field model 
(ONF)


• baseline full Gaussian model 
(Gauss)


• Flexible model (Flex)

and then fit each model to get log 
likelihood scores


Flex outperforms the fit of 
mismatched generative models

* Same Likelihood p (x |r) = " (x |Ar, σ2 ⋅ I)

*
*
*
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,  ,    pHNH (r) = 1
λ

e−r
λ ⋅ H (r) pONF (r) = 1

2b e− r − a
b

pGauss (r) = " (r |μ, σ2 ⋅ I)

Generative 
model


