
Fitting normative neural sampling hypothesis mod-
els to neuronal response data

Summary

A prominent theory of sensory perception advocates that perception in the brain is implemented via
probabilistic inference. The neural sampling hypothesis (NSH) posits that neuronal responses to a
stimulus represent samples from the posterior distribution over latent world state variables (e.g., object
identity) that underlie the stimulus. Existing work on NSH commonly evaluates qualitative agreement
of experimental data with simple generative models of the stimulus and does not fit NSH models to
experimentally observed sensory population responses.

We propose a novel formulation for NSH that allows us to directly fit NSH models to recorded
stimulus-response pairs, and to formulate more flexible generative models. We formalize NSH as an
equivalence between the distribution over stimulus-conditioned responses and the posterior distribution
over stimulus-conditioned latent world-state variables. This enables us to fit generative models under
NSH to responses and stimuli, including existing NSH models. Furthermore, we use a normalizing
flow-based neural-network model and learn the generative model directly on image-response pairs.
Our formulation allows us to directly compare NSH models to existing DNN-based encoding models
of stimulus-conditioned responses. We fitted a Hoyer-Hyvärinen NSH model directly on macaque V1
responses to natural images, and compared its performance to a state-of-the-art deep neural-network
system identification models. We found that the NSH model was outperformed by even a simple linear-
nonlinear model. While this is somewhat expected, the size of the performance gap clearly indicates
that current NSH models are too simple for real responses and motivates the development of more
complex generative models. Overall, our work is an important first step toward a more quantitative
evaluation of NSH models and provides a novel framework that will let us learn the generative model
directly on data, paving the way for a better understanding of probabilistic computational principles
that underlie perception and behavior.

Additional Detail

Theory NSH posits that the neuronal responses r elicited by the stimulus x can be interpreted as
stochastic samples from the posterior distribution p (z|x) computed from latent variable-based genera-
tive model over the data, giving rise to the relationship z −→ x −→ r (Fig. 1A). Existing NSH models
start by assuming a specific form of the generative model p (x|z) and p(z), giving rise to the posterior
p (z|x) which is then used to simulate responses r and qualitatively assess the similarity to neural data.
Consequently, there has been little room for the generative model to be informed or learned from the
data, and it has thus been difficult to quantitatively compare the quality of the fit of NSH models to other
models, such as deep system-identification models. To enable a direct quantitative evaluation of NSH
models on data, we formalize NSH as a functional equivalence between stimulus-conditioned neuronal

response distribution and the posterior distribution over latents, i.e, pr|x (r|x)
d
= pz|x (r|x) (

d
= denotes

equality in density functions). Consequently, we can re-express the joint distribution over the stimulus-
response pair p (x, r) = p (x|r) p (r) = px|z (x|r) pz (r), allowing us to model the stimulus-response
distribution in terms of the underlying generative model specified by px|z and pz. Importantly, we can
now learn the generative model directly on the recorded stimulus-response pairs {xi, ri}Ni=1 by maximiz-
ing the log-likelihood of observing the data: θ∗ = argmaxθ

∑N
i

{
log px|z (xi|ri; θ) + log pz (ri; θ)

}
. Once

trained, we can use the resulting posterior pz|x(r|x) to compare the NSH model’s performance to that
of system identification models by evaluating how well each model predicts the neural responses to test
stimuli.

Simulations We simulated 10,000 pairs of image stimuli and neuronal responses from existing NSH
models: (1) Hoyer & Hyvärinen model (HNH), where pz (ri) = λi exp (−λiri)H (ri), where H is the

heavyside function (2) Olshausen & Field (ONF) model where pz (ri) =
1
2bi

exp
(
− |ri|

bi

)
and (3) a Gaus-



sian model (Gauss), where pz (r) = N (r|0, σrI). All three models shared a common linear Gaussian
likelihood function px|z (x|r) = N (x|Ar, σxI), where importantly, A is learned via standard ICA model
with a complete basis on natural image patches. Each simulated pair consists of an 8x8 image and
a vector of 64 neuronal responses. Our flexible deep normalizing flow-based neural network model

(Flex) (4) uses pz (r) = N (r|0, I) · | det ∂Fϕ(r)

∂r
|, and px|z (x|r) = N (x|µθ (r) , σ

2
θ (r)), where Fϕ (·), µθ (·)

and σ2
θ (·) are neural networks. We fitted all models on the simulated datasets and computed exact

log-likelihoods (Fig 1B). We observe that the Flex model fits neuronal responses simulated under other
NSH models well, i.e., learns pz (r) and px|z (x|r) and outperforms other NHS models with mismatched
generative distributions. This demonstrates that our framework allows for NSH model fitting and that
Flex model has the ability to flexibily capture the data distribution across widely varying generative
models.

Experiments on recorded neuronal responses To demonstrate our approach on real data, we
used V1 population responses to natural images (ImageNet dataset) recorded from awake Macaques
using 32-channel (NeuroNexus) arrays. Each image was presented for 120 ms and we extracted spike
counts from 40ms to 160ms after the image onset. We fitted three models on our dataset: (a) an HNH
model (an NSH model), (b) a linear-nonlinear (Linear-SI) and (c) a DNN-based (Deep-SI) neuronal
encoding model or system identification model. We first fitted HNH generative model, i.e., px|z (x|r)
and pz (r) and then employed variational inference to compute the posterior pz|x(r|x) using Gamma
distribution and a 2-layer fully-connected neural network as the amortized inference function. We then
compared the predicted responses from the approximate posterior from the NSH with the predictions of
the linear-nonlinear and DNN-based neuronal encoding models, by computing the average correlation
between predicted mean response and the average neuronal response across repeated test stimulus
presentations on a set of 28 well-isolated single units (1C). We conclude that: (1) as far as we know,
this is the first time that the normative theory of NSH has been quantitatively evaluated by fitting
and predicting neuronal responses to arbitrary stimuli, which we believe is an important step towards
testing the normative theory, and (2) that the HNH model performs quite poorly which is expected
given its fairly restricted form. This motivates the development of more flexible models such as the
one proposed here to be fit to real data to learn the generative model harbored by the brain and better
understand probabilistic computational principles that underlie perception and behavior.
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Figure 1: Fitting NSH directly to data. A. Our formulation of NSH as a latent variable probabilistic
model, where z is the world state variable such as an oriented grating, x is the observable stimulus such
as an image and r is the neuronal response, e.g. from V1, elicited by the stimulus. B. Log-likelihood
scores (in bits, higher the better) of NSH models on simulated data. Each column corresponds to
one simulated dataset and each row corresponds to log-likelihood of one NSH model on held-out test
data. Our model (Flex) outperforms the fit of mismatched generative models, in that its log-likelihood is
closest to ground-truth model in each column. We did not compute the scores for HNH under ONF and
Gauss data since the exponential distribution in HNH has positive-only support. C. Average correlation
of predicted means of NSH-based HNH model, and linear-nonlinear- and DNN-based neuronal response
prediction models with the data mean.


