Neural Likelihood Christoph Blessing^{*,1}, Edgar Y. Walker^{*,1-3}, Katrina R. Quinn⁴, R. James Cotton⁵,

Wei Ji Ma⁶, Andreas S. Tolias^{2,3,7}, Hendrikje Nienborg⁴, Fabian H. Sinz^{1-3,8} ¹Institute for Bioinformatics and Medical Informatics, University Tübingen, Germany; ²Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas; ³Department of Neuroscience, Baylor College of Medicine, Houston, Texas; ⁴Centre for Integrative Neuroscience, University Tübingen, Germany; ⁵Shirley Ryan Ability Lab, IL, USA; ⁶Center for Neural Science and Department of Psychology, New York University, NY, USA; ⁷Department of Electrical and Computer Engineering, Rice University, TX, USA; ⁸Bernstein Center for Computational Neuroscience, University

Introduction

Tübingen, Germany; ^{*}equal contribution

- Perceptual decision making in humans and animals accounts for the uncertainty in the relevant stimulus variable
- The likelihood over the stimulus captures the uncertainty for a fixed neuronal response
- Full likelihood estimation can be challenging due to high dimensionality
- Previously used parametric models make **strong assumptions** about the form of the noise correlations
- We present a simple (yet general) neural network based method that makes **fewer** assumptions about the form of the likelihood function

Method

Our method relies on two key steps:

1. Recover an unnormalized likelihood from a model of the posterior using the known prior

2.Estimate the posterior using a neural network

Experiments

- Monkeys classified trials into near or far, based on the predominantly occurring disparity in a random sequence of disparities
- Multi-unit activity in V2 was recorded

- Monkey classified orientations as drawn from category 1 or 2 of known distributions.
- Contrast of stimulus was varied from trial to trial
- Multi-unit activity in V1 was recorded
- Flow model

Contrast (%) Relative hypothesized orientation (°

• For low contrast the uncertainty about the stimulus is higher so the likelihood curves become wider

Models

- Single-layer gated recurrent unit
- Same linear readout at each time step
- Initial hidden state is learned

Results

Evidence for particular class increases... • ...over time

...with higher signal strength

Deep-learning based likelihood decoders for perceptual decision making make fewer assumptions about the form of the likelihood function.

Take a picture to download the full paper Toy Data

Different Readouts

Ideal Observer

Acknowledgements

RO1 EYO26927.

Logistic Regression

Spike Rate Analysis

Supported by the Institutional Strategy of the University of Tübingen (Deutsche Forschungsgemeinschaft, ZUK 63); the Carl-Zeiss-Stiftung; the DFG Cluster of Excellence "Machine Learning – New Perspectives for Science", EXC 2064/1, project number 390727645; CRC 1233 "Robust Vision" project number 276693517, FOR 1847 project NI1718/1-1; by National Science Foundation Grant IIS-1132009; NIH DP1 EY023176 Pioneer Grant; NIH