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Chapter 1

Introduction

1.1 Foreword

The subject of this diploma thesis is the utilisation of ”non-examples”
in a supervised machine learning task. Choosen carefully, these exam-
ples can carry valuable prior knowledge about the underlying learning
problem and can increase the performance of the learning algorithm.
The reason why the additional data points are called ”non-examples” is
that they do not share the same distribution with the other data exam-
ples. While the usage of additional unlabelled examples from the same
distribution has been heavily investigated in the last decade, the util-
isation of data from a different distribution has almost been ignored.
Although the idea had been mentioned by Vladimir Vapnik in his book
The Nature of Statistical Learning Theory [99] over ten years ago, only
recently the first algorithm based on that idea was published [103].
However, since the underlying idea by Vapnik is rather conceptual, the
authors of [103] used several relaxations in order to arrive at a for-
mulation of a learning algorithm that could be efficiently implemented.
This strategy bears the risk that the augmented performance of the
learning algorithm is due to effects introduced with the relaxation and
can therefore not be imputed on the initial idea. This is the reason why
this thesis pursues two approaches: the analysis of the algorithmic
implementation by [103] and some variations of it, and a theoretical
comparison of the initial idea by Vapnik with the maximum entropy
principle in empirical inference.

This thesis is composed of four parts. The first part gives a rather
general introduction on machine learning. Since this field is very wide
and polymorphic, this introduction cannot and does not intend to be
complete or rigorous. Its goal is to serve as a very general overview
and to specificly stress a fundamental problem in machine learning:
the impossibility to learn without prior assumptions. In fact, as will
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CHAPTER 1. INTRODUCTION 5

be pointed out in a brief section about philosophy of science, this fun-
damental impossibility is not a genuine property of machine learning
but rather a problem of all empirical sciences. Since there is no way
to escape this fact, the more modest strategy must be to smartly in-
corporate prior knowledge about a problem into a learning algorithm.
The motivation for the first section is to show that the utilisation of
additional unlabelled examples, from the same distribution or not, is a
generic and elegant way to make prior assumptions.

Chapters 2 and 3 represent the analytical and experimental work
done by the author. Chapter 2 comprises the theoretical analysis. At
its beginning, the initial idea by Vapnik and the algorithmic implemen-
tation of [103] are introduced in sections 2.1 and 2.2.1.1. In sections
2.2.1.2 and 2.2.1.3, the algorithm of [103] is extended. The remaining
sections of chapter 2 analyse the original algorithm and the introduced
variations as well as the original idea by Vapnik.

The third part applies the algorithms to real world data. Two neu-
ral applications, namely Brain Computer Interfaces (BCI) and stimulus
prediction from spike trains, are investigated in greater detail. For the
section about BCIs, actual experiments with a BCI were carried out in
order to explore the possibility of recording such an additional dataset
of non-examples.

The last chapter summarises the thesis, draws conclusions from
the theoretical analysis and the empirical experiments and discusses
possible future work.

Throughout this thesis, little marginal notes are placed next to the
main text. Their intended purpose is to give a rough picture of the line
of though underlying the text.

The recentness of this branch of machine learning offers the great
chance of exploring new possibilities and getting new insights, but re-
stricts the work of half a year to be of interim character at the same
time. However, the author hopes that his thesis can at least quicken
the insterests of the reader a little bit for this new topic.

1.2 Notation

In order to increase the readability of formulae, I stick with some no-
tation rules. In many cases these rules agree with the notational con-
ventions in the machine learning community.

• Scalar values, functions, general variables and constants are writ-
ten as Latin or Greek letters. Usually variables like x, y, z are taken
from the last letters in the Roman alphabet, constants like a, b, c
from the first. There is no such rule for variables or constants
denoted by Greek letters. In almost all cases, data points are de-
noted by x or z and their labels by y.



CHAPTER 1. INTRODUCTION 6

• Functions use parentheses, functionals or operators use brackets
(if they use any). E.g. f(x) is the value of the function f at x and
R[f ] is the value of the functional R at f .

• Matrices are denoted by upper case bold Latin letters (e.g. A, B).

• To stress that something is an element of a vector space, it is
written in bold font (e.g. x is a vector).

• Sometimes a function f is also written as f(·). The “·” indicates
that the argument is left open. This is especially useful in situa-
tions in which a function takes several arguments. For example,
if k is a function taking two arguments, then k(x, ·) is the function
k with the first argument fixed to x and the second argument left
open. So, k is reduced to a function k(x, ·) of one argument.

• Sets are denoted with calligraphic font (e.g.X , Y) or in Gothic type
(e.g. U, L). Some special, frequently occuring sets are marked by
reserved symbols. The domain of a learning algorithm is always
denoted by D, its range by R. The letter L is used for a specific in-
stance of a labelled set, Y denotes only the labels of L. The symbol
X is either denotes a general training set, labelled or unlabelled,
or merely the input points x of a labelled set L. The exact meaning
should always be clear from the context. Finally, the symbol U is
used for a Universum set.

• Fields, rings and vector spaces are written in the usual notation
R, Z or Rn.

• As in [32], random variables are denoted by the same letter as the
values of the random variable, but in sans-serif font. So X is the
random variable and x is one of its values.

• The expectation operator is denoted in bold sans-serif font. The
index indicates the distribution the expectation is taken over. Here,
the notation convention for random variables applies, too, e.g. the
expectation of f(X) with respect to P(X|Y,Z) is written as EX|Y,Z[f(X)].
Whenever the subscript of E is omitted, the distribution the expec-
tation is taken over should be clear from the context.

• When a random variable is fixed to some value, it is again written
in Latin font, e.g. P(X|Y = y, Z) is written as P(X|y, Z). The same
rules apply to the expectation operator.
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1.3 Machine Learning

1.3.1 Machine Learning

The subject of machine learning research is to automate the process of
inference. It investigates whether and by which means algorithms can
efficiently extract rules or patterns from a finite amount of data which
extrapolate to unseen parts of the data domain with low error. The
process of inferring such rules is called learning. The set of data points
the algorithm is learning on is usually called training data or training
examples. In many cases, the elements of this set are additionally
equipped with values from another set R, called labels or target values.
These labels indicate the category or class of a single data point. The
purpose of most learning algorithms is to predict the labels on data
points for which the label is not known. Those data points are referred
to as unseen or unlabeled.

Thus, a machine learning algorithm A may be seen as a mapping Machine learning
as mapping from
data to functions

from the power set ℘ of a certain data domain D, possibly equipped
with labels from R, into the set of functions F := {f | f : D → R} from
that domain to R:

A : ℘( (D ×R) ∪ D) → F . (1.1)

Among other features, the training set X ∈ ℘( (D ×R) ∪ D) that is sup-
plied to the algorithm for learning and the range R of the learnt func-
tion, can be used to categorize learning algorithms. Figure 1.1 shows a
simple taxonomy of learning algorithms.

As (1.1) already suggests, learning can be seen as an inverse prob- Machine learning
as an inverse
problem

lem. Given a set of input-output pairs sampled from an unknown func-
tion in a process that might be afflicted with noise, the goal of a learn-
ing algorithm is to reconstruct the underlying function that generated
these data points. There are two major paradigms in machine learning
to address this problem.

Bayesian learning models the distribution of the data via a prior, a Two major ma-
chine learning
paradigms

distribution encoding prior knowledge about the learning problem, and
a likelihood function that establishes a link between the data points
and the noisy function values via the application of Bayes Rule. The
result of Bayesian learning is a distribution conditioned on the training
data. This distribution is called posterior. The actual function is then
constructed by using the estimated posterior. In most cases the like-
lihood function depends on parameters θ that are adjusted during the
learning procedure. This adjustement can either be done by imposing
another prior on the parameters and averaging over all possible values
of θ with respect to the prior or by choosing a fixed value for θ according
to some criterion like maximum likelihood (ML), maximum a posteriori
(MAP) or other criteria.
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Machine Learning

Supervised

Learning

X ⊆ D ×R

Semi-Supervised

Learning

X ⊆ (D ×R) ∪ D

Unsupervised

Learning

X ⊆ D

Reinforcement
Learning

X ⊆ D
global Feedback

Classification

R ⊆ Z
|R| < ∞

Regression

R = Rn

Clustering

R ⊆ Z

Figure 1.1: Very coarse taxonomy of learning algorithms with respect to the type of

data points contained in the set X that is fed to the algorithm for learning and the range

R of the learnt function.

Statistical or frequentist learning algorithms aim at directly con-
structing the function without estimating a distribution in between.
Figure 1.2 shows a simple example for a learning problem. The task
is to discriminate between two Gaussian distributions. The left figure
shows the underlying distribution while the right figure depicts the as-
sociated decision function.

There are two major reasons why this inverse problem is ill-posed. The inverse prob-
lem is ill-posedOn the one hand, most learning problems are noisy. Therefore it might

happen that the same input occurs twice in the same data set with
different target values for each instance, making it impossible to fit the
target values exactly. If the target values are noisy, fitting an exact
function is not even desirable since the goal is to model the underlying
function without noise. Intuitively the algorithm should not trust the
data too much. This problem can be dealt with in the case of non-
Bayesian learning by not requiring the algorithm to fit the data exactly
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Figure 1.2: Simple example of a learning problem: The task is to discriminate between

two Gaussian distributions (left). Once the true class conditioned distributions PX|Y=1(x)

and PX|Y=−1(x) are known, a decision function is given by sign
„
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(right). Learning this decision function can either be addressed by identifying this func-

tion directly or modeling the class conditional distributions first.

but only as well as possible. The quality of the fit is usually measured
by a loss function. There is a direct correspondence between loss func- Machine learning

problems are af-
flicted with noise

tions and noise distributions, i.e. the choice of a certain loss func-
tion makes implicit assumptions about the noise (see 1.3.3). Bayesian
learning usually deals with noisy target values by additionally estimat-
ing a noise distribution or encoding the noise in the likelihood function.
In order to avoid the situation in which the learning algorithm just de-
clares everything as noise, assumptions have to be made about the
noise and the data distribution. Usually it is assumed that the noise is
uncorrelated and independent, meaning that the noise covariance ma-
trix is diagonal and that the noise on one data point does not depend
on the noise on other data points. The assumptions about the data are
encoded in the prior.

On the other hand, especially in the case where the set of sampled Machine learning
optimises a regu-
lariser

data points is small, there might be many possible functions or likeli-
hood parameters that fit the data. In that case the inverse problem is
under-determined and therefore there is no unique solution. To make
the solution unique, an additional criterion for the resulting function
is introduced, i.e. the problem is regularised. The regulariser encodes
assumptions about the underlying function. Its type is usually deter-
mined by the choice of the induction principle, that is a rule which tells
when to prefer one function over another if both are valid solutions to
the inverse problem. For example, an assumption implicitly made by
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almost all regularisers is that the function of interest has to be smooth.
Many people interpret this as an application of Occam’s1 razor, which
basically states that explanations should not be unnecessarily com-
plex. It can also be seen as a continuity-like criterion, stating that
similar input values should have similar output values.

As mentioned above, when dealing with noisy data, an exact in- Machine learning
minimises a loss
function

terpolation of the data used for learning is often hardly possible and
not even desirable. Hence, the learning algorithm only aims at fitting
the target values as well as possible. The quality of the learnt func-
tion is measured by a loss function that assigns a loss value to each
pair of predicted and expected target value. One simple example of a
loss function is the so called zero-one loss which is just the fraction
of misclassified examples. A very common loss function for regression
is the quadratic loss used in least squares regression. Since the loss
function encodes an important aspect of the learning problem by spec-
ifying the ”cost” for deviations from the exact fit of the data, it should
be incorporated into the learning or prediction process. In Bayesian
learning it is used in the prediction step by choosing that element of
R that minimises the expected loss with respect to the posterior. If
the assumptions made by the prior about the underlying distribution
are correct, this is the optimal strategy for optimising the expected
loss on unseen data points. However, choosing the prior is not easy
and in most cases computational considerations outweigh modeling is-
sues. Frequentist learning mostly incorporates the loss function into
the learning process itself by directly minimising the considered loss.
Taking the regulariser into account, it is possible to prove bounds for
the deviation of the expected loss on all data points from the empirical
error on the data points used for training the algorithm.

In general, the process of learning involves the optimisation of an Machine learning
as an optimisa-
tion of regulariser
and loss function

optimality criterion. In unsupervised learning this criterion is a func-
tion on the completely unlabelled data points which encodes desired
properties of the solution. One such function could be a loss measure
between the original data and a lower dimensional representation of it.
The goal in supervised learning is to find a function that has low ex-
pected loss with respect to the distribution of the data. The optimality
criterion in frequentist supervised learning algorithms is therefore to
jointly minimise the error on the available set of data points and the
regulariser that promises better generalisation via error bounds.

If all involved objects have a specified distribution, there is no op-
timisation in Bayesian learning during the training stage. In this case
the desired posterior distribution can simply be calculated by Bayes
rule. The expected loss is then minimised in the prediction step. If not
all parameters have a specified distribution, a set of parameters is cho-
sen that is optimal according to a criterion like maximum likelihood,

1William of Occam, approx. 1285 - 1347
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maximum a posteriori or maximum entropy (see 1.3.3). This procedure
involves a optimisation step.

1.3.2 Philosophy of Science in a Nutshell - About the
Impossibility to learn without Assumptions

The question whether and how general laws can be inferred from a
finite amount of observations is almost as old as science itself. The
following paragraphs are a brief overview over the parts of philosophy
of science that are relevant to this thesis and do not claim complete-
ness. The main statement of this section is that there is no empirical
law or rule that is provably true and that even the procedure of infer-
ring this rule from data needs prior assumptions about the underlying
process in order to have predictive power. Since machine learning is
the automated version of inferring rules from finite data, this implies
that machine learning algorithms must make prior assumptions. This
necessity motivates the use of non-examples as one possible way of
incorporating prior knowledge.

The Greek philosopher Aristotle2, who is regarded as the founder of Induction in the
philosophy of
Aristotle

logic, already knew that when proving a statement basic true proposi-
tions are necessary for its deduction. These basic propositions, which
he called archai, are gained by a process called epagoge. Cicero3 trans-
lated the Greek word ”epagoge” into the Latin word ”inductio”, the ety-
mological root of the English word ”induction”. The process of epagoge
might seem a little odd from the viewpoint of current philosophy of sci-
ence: Aristotle believed that general concepts are actually contained
in everything that can be observed. Therefore it is possible to obtain
generally true sentences by observation and commemoration, meaning
that the archai are directly evident from observations (see [48]). It is
clear that this neither explains the emergence of generally true propo-
sitions nor justifies their truth.

A philosophical position much closer to the current view is that of The scepticism of
Sextus EmpiricusSextus Empiricus4 . He argued that it is not possible to conclude a

general statement from a finite amount of observations since there can
always be exceptions to this statement that are not included in the ob-
servations. Unless it is possible to check all instances, one cannot rule
out the possibility of an exception and therefore the truth of the inferred
general statement cannot be taken for granted. The considerations of
Sextus Empiricus do not hold, of course, for a general statement being
true due to its logical structure. Philosophy of science is concerned
with empirical sentences since these are the only ones that carry infor-
mation. If someone utters that it is raining outside or it is not raining

2Aristotle: 384-322 B.C.
3Cicero: 106-43 B.C.
4Sextus Empiricus: 200-250 AD
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outside at some place in the world, then the truth of his statement is
immediately evident. However, he does not convey anything informa-
tive about the real world, in particular he did not say anything about
the current weather. But as soon as a general statement contains any
information, the arguments of Sextus Empiricus apply.

Another famous philosopher, concerning himself with the question Inductive infer-
ence in David
Hume’s philoso-
phy

whether a finite amount of observations can justify the truth of a gen-
eral statement, was David Hume5 [43, 44]. He split the problem of
inductive inference into two: a logical and an empirical one [48]. The
latter asks why humans expect that the experiences made in the past
will match experiences in the future, or, in other words, how humans
justify the use of past experience as a basis for predictions about the
future. His answer is that once humans have observed two events that
are ”constantly conjoined”, meaning they always occur together, they
infer a causal relation between the two. So, in some sense, we are
simply used to both events appearing together and thus assume that
one causes the other. This does not justify the truth of a general state-
ment inferred by induction. The question of justification is addressed
in Hume’s logical problem, which is the question whether it is logically
justified to deduce future events from past experience. Keuth [48] fur-
ther splits this problem into the question about the possibility of an
analytic induction principle and the possibility of a synthetic induction
principle. The terms ”analytic” and ”synthetic” have been used by Im-
manuel Kant (April 22, 1724 - February 12, 1804) in his book Kritik
der reinen Vernunft [46] to discriminate between statements that can
be recognised as true from their mere form6, and statements that are
not true merely because of formal reasons. Since the latter are not
merely true due to their logical structure they are the ones that carry
actual informational content. According to Kant, there are synthetic
statements that can be recognised as true without referring to any ex-
perience. This view is critisised by many contemporary philosophers of
science.

An analytic induction principle would be the possibility to prove gen- Analytic vs. syn-
thetic induction
principle

eral statements from finite observations, i.e. logically justify their truth
from a finite amount of empirical data. A synthetic induction principle
would be the possibility to justify the truth of general statements on
factual grounds. Unfortunately, both principles cannot exist for logical
reasons. Assume that Fn is the future prediction that shall be proven About the im-

possibility of an
analytic induction
principle

from a number of observations Fa, . . . , Fm, where a, ..., m are certain
objects having the property F and n 6∈ {a, ..., m} is a certain object for
which the property F shall be predicted. It is possible to prove that n
has F , i.e. {Fa, ..., Fm} ⇒ Fn if and only if Fa∧...∧Fn → Fn is a logically
true sentence. If Fa∧ ...∧Fn → Fn were logically true, it must not hap-

5David Hume: April 26, 1711 - August 25, 1776
6Those statements are called tautologies in logic.
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pen that n has not F , i.e. Fn is false. But, in general, there is always
the logical possibility for empirical objects like n that Fn is false. Fn
could be false without violating the consistency of the empirical world.
Therefore, Fa ∧ ... ∧ Fn → Fn cannot be true for logical reasons. Thus,
an analytic induction principle is impossible.

The question whether we are able to know that a synthetic induction
principle exists can again be split into two parts, namely if we can About the im-

possibility of a
synthetic induc-
tion principle

know a priori that it exists or whether we can know a posteriori that it
exists. If there was a statement that designated a synthetic induction
principle to be true and which would turn out to be false a posteriori,
the induction principle would loose its justification. But since there is
no logical reason why a general empirical statement cannot turn out to
be false, every statement generated by an a priori synthetic induction
principle must also be true a priori. However, empirical statements
can only be true a posteriori. Therefore, an a priori synthetic induction
principle for a posteriori true statements cannot exist. This answers
the first part.

The only possibility left to justify general empirical statements is an
a posteriori synthetic induction principle. In this case it would be a
general empirical statement and the only way to show its truth was to
check all instances or to use another induction principle. The former
is impossible due to the infinite range of an induction principle. The
latter leads to an infinite regress. Therefore there can be no a posteriori
synthetic induction principle. This means that any general empirical
law cannot ultimately be proven, which condemns it to be a mere as-
sumption, even though it might be well reviewed.

Philosophy of science concerned itself almost exclusively with the About the im-
possibility of a
general algorithm
yielding almost
true statements

question whether the truth of general laws or statements, which are
inferred from a finite number of observations, can be proven. This
corresponds to the question if a learning algorithm can provably learn
a function from a finite amount of data which has zero expected loss
on the entire domain of the data. The preceding paragraphs showed
that logical reasons render such an inference principle impossible. But
what if the problem is relaxed to the question whether it is possible to
design a general learning algorithm that learns the true function up to
some small, bounded error? Unfortunately, this is not possible either,
as is established by the so called No-Free-Lunch theorem [23, 105, 106,
10]. Its four parts basically state that there is no superior learning The No-Free-

Lunch theoremalgorithm regarding the off-training set error, which is the error on all
examples not contained in the training set. In detail the statements are
[23]:

1. Uniformly averaged over all target functions, for any two learning
algorithms trained on sets of equal size, the expected off-training
set error is the same. So, if all target functions are equally likely,
no matter how clever a learning algorithm is chosen, it will not
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outperform any other. Furthermore, this means that for each
learning algorithm there is at least one target function for which
random guessing is the better algorithm.

2. For any fixed dataset, uniformly averaged over all possible target
functions, the expected off-training set error of two arbitrary learn-
ing algorithms is the same. This means that even if the data set
used for learning is known, without any knowledge about the tar-
get function, it is impossible to choose a learning algorithm that
outperforms the others.

3. Uniformly averaged over all distributions over target functions, for
any two learning algorithms trained on sets of equal size, the ex-
pected off-training set error is the same. This part makes basically
the same statement as (1) only that it ascends one step in the hi-
erarchy and considers the situation in which not all functions but
all distributions over possible target functions are equally likely.
Therefore, if one does not know anything about the distribution of
target functions, on average, any learning algorithm is as good as
any other.

4. For any fixed training set, uniformly averaged over all distributions
over target functions, for any two learning algorithms trained on
sets of equal size, the expected off-training set error is the same.
This relates to statement (2) in the same way statement (3) relates
to (1).

In summary, the No-Free-Lunch theorem says that the only way to do About the ne-
cessity to make
assumptions for
learning

better than random guessing is to narrow down the class of possible
target functions by making specific assumptions about it. If the as-
sumptions are correct, one learning algorithm can possibly outperform
others. From the preceding paragraphs it is clear that, for an unknown
target function, it is impossible to prove the correctness of ones as-
sumptions. So all that remains is to hope that the assumptions are
correct indeed. As will be seen later, one possible way of introducing
a bias for the function class admissible to the learning algorithm and
therefore incorporating prior knowledge in the learning problem is to
use additional data that implicitly specify certain desired properties of
the resulting function. These data points can have the same distri-
bution as the training data, like in semi-supervised learning, or they
can have a different distribution. The latter case is investigated in this
thesis.

1.3.3 General Assumptions in Bayesian and Frequen-
tist Learning

The No-Free-Lunch-Theorem states that there is no other way to per- Assumptions via
a prior
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form better than random guessing but to make assumptions about the
class of target functions. The various assumptions that can be made
mostly differ in their level of generality, varying from very specific to
very general. The most specific assumptions are made in those learn-
ing algorithms that are specifically tailored to a certain application.
Here, a priori knowledge about, for instance, the linearity of the target
function, its positive range, its limited domain or its invariance with
respect to a group of transformations [68, 69] can directly be incor-
porated into the algorithm by restricting the accessible functions to a
class that obeys the desired properties. Probably the simplest exam-
ple of this kind is linear least squares regression [29, 93] which is an
everyday tool in all branches of empirical science. Of course, if the
assumptions are not correct, the generalisation performance may be
arbitrarily poor. This phenomenon can be observed in the case of lin-
ear regression, too, when fitting samples from a non-linear function.
In Bayesian learning these assumptions are reflected in the choice of
the prior for predicting functions or in the parameters that indirectly
influence the posterior distribution of target values.

Another rather general assumption is the choice of the noise model, Assumptions via
a noise modelthat is the assumed distribution of noise on the target values. In

Bayesian learning the noise model is reflected in the likelihood function
PL|F(L|f), i.e. the probability of the observed data L = {(x1, y1), ..., (xm, ym)}
given a certain target function f . A very general assumption being made
in this respect in almost all learning algorithms is that the noise at one
point in the domain of the observations is independent of the noise at
any other location. In this case the probability for the noise can be
written as a product of independent noise probabilities

PL|F(L|f) =
m∏

i=1

Pnoise(f(xi)− yi).

When looking at the log likelihood log PL|F(L|F) this term becomes a sum Independent
noise model and
cumulative loss
penalisation

of noise terms over all observations

− log PL|F(L|f) = −
m∑

i=1

log Pnoise(f(xi)− yi).

The term
∑m

i=1 log Pnoise(f(xi) − yi) corresponds to the additive penal-
isation of errors with respect to some loss function ` in frequentist
learning

maximisef

m∑
i=1

log Pnoise(f(xi)− yi)
4
= minimisef

m∑
i=1

`(f(xi)− yi).

Therefore, the choice of the noise model determines the optimal loss Linear least
squares assumes
independent
Gaussian noise

function and the assumption of independence allows the independent
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minimisation of the empirical error made on the training set. Looking
again at the example of linear least squares, it is easy to see that the
underlying noise model is independent Gaussian noise:

log PL|F(L|f)
independence

= log
m∏

i=1

Pnoise(f(xi)− yi)

Gaussian= log
m∏

i=1

1
σ
√

2π
exp

(
− (f(xi)− yi)2

2σ2

)

= −c1 ·
m∑

i=1

(f(xi)− yi)2 + c2

Here, c1 and c2 are constants that do not depend on L. Therefore they
can be ignored when maximising the log likelihood or minimising the
loss, respectively. Thus, assuming independent Gaussian noise leads
to the minimisation of the quadratic loss `(f, x, y) = (f(xi) − yi)2. Of
course, the tight link between loss functions and noise distributions is
also valid in the other direction. Choosing a certain loss function is
equivalent to the assumption of a certain noise distribution. In prac-
tice, however, the loss function is not always chosen according to a
specific noise distribution, but also according to geometric considera-
tions or certain properties the solution of the learning problem should
have, resulting in more sophisticated noise models [89].

The most general assumption made in most learning algorithms is Occam’s Ra-
zor and simple
functions

that the resulting function should be simple. This approach is often
motivated by a principle called Occam’s Razor. Occam stated that ”en-
tia non sunt multiplicanda praeter necessitatem” which translates to
”entities (explanations) should not be multiplied beyond necessity”. In
machine learning Occam’s Razor is understood as the preference for
learning algorithms that do not yield functions being more complex
than necessary. Surely, ”necessary” is a very vague formulation de-
scribing the trade-off between the quality of the fit to the training data
and the simplicity of the resulting function and depends on the spe-
cific learning problem at hand. Simplicity is mostly understood as
smoothness of the learnt function, which is controlled by a regulariser
in frequentist learning (see 1.5.1) or by an appropriate prior over target
functions7 in Bayesian learning. Nevertheless, the No-Free-Lunch The-
orem states that, in general, simpler or smoother functions are not any
better than complex ones. The reason for the frequent empirical suc- Possible motiva-

tions for Occam’s
Razor

cesses of Occam’s razor might be that we expect nature to behave in a
smooth way, i.e. that small variations in the inputs result in only small
variations in the outputs. This is the case in many real world functions
such as physical laws, so smoothness is one of the weakest assump-
tions that can be made about a putative target function [68, 69]. But as

7In general, the use of a prior does not necessarily lead to smooth prediction functions.
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[23] points out, it might as well be that only the smooth relationships
are the ones that quicken our interest and there is no good reason to
believe that all real world relationships have to be smooth.

Another motivation for the implementation of Occam’s razor in learn-
ing algorithms would be the assumption that adding more data points
to the training set does not, on average, degrade the generalisation per-
formance of the learning algorithm. Then, according to [23], a version
of Occam’s razor can be derived. But again, as emphasised by [23], this
amounts to a non-uniform prior over target functions. Since we have
no secure knowledge about possible target functions, the assumption
that the generalisation error does not increase with more training data
is a premise and cannot be proven.

1.3.4 Implicit prior Knowledge via additional Data

The goal of supervised learning is to establish a correspondence be- Semi-supervised
learning: Using
prior knowledge
implicit in data
from the same
distribution

tween data points X from the input domain D to their labels Y by ex-
amining a finite labelled data set L = {xi, yi}i=1,...,m, xi ∈ X, yi ∈ Y. This
allows for a special way of incorporating prior knowledge: In many sit-
uations additional unlabelled data from the domain D and the same
distribution as the labelled data is available. One example from bioin-
formatics would be the classification of proteins into families: Sequenc-
ing a protein or the corresponding DNA/RNA is cheap and highly auto-
mated, but determining its protein family requires more manual work
and is therefore much more expensive. In practice, usually only a few
examples are labelled while the bigger part remains unlabelled. The
problem specific information which is implicitly present in those data
points, even though they have no label, can be used to bias the function
class of the learning algorithm in a certain way. This setting is called
semi-supervised learning which is part of the more general framework
of data-dependent regularisation. Those additional data points can add
valuable information to the learning problem. Different methods of
semi-supervised learning and data-dependent regularisation are briefly
reviewed in section 1.5.2.

The setting in which the unlabelled data is from a different distri- Universum learn-
ing: Using prior
knowledge im-
plicit in data
from another
distribution

bution than the training points has only been investigated very little so
far [99, 98, 103]. The situation is more subtle here. If the unlabelled
data is just from another distribution and not related to the learning
problem in any respect, it is clearly useless to the learning algorithm.
However, there are situations in which additional unlabelled data is
not from the same distribution but related to the learning problem at
hand. One example is hand written digit recognition. When classifying
patches of handwritten fives against patches of handwritten eights, ex-
amples of all other handwritten digits are clearly not from the same dis-
tribution but from the more general distribution of handwritten digits.
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Since those unlabelled examples, which will be called Universum ex-
amples later, are from a more general framework of learning problems,
they can still be used as a source for problem specific prior knowledge.
In the case of digit recognition, the other digits could contain infor-
mation about certain transformations (like rotation, translation, line
thickening etc.) handwritten digits - and therefore also fives and eights
- are usually afflicted with.

The use of this kind of data points in classification and the implicit
assumptions made about this Universum set in the original idea by
[99, 98] as well as the implementation of [103] are the main focus of
this thesis.

1.4 Mathematical Tools

1.4.1 Reproducing Kernel Hilbert Spaces

As mentioned in the introduction, one underlying assumption found in
almost all learning algorithms is the simplicity of the learning process’
solution, motivated by the principle of Occam’s Razor. Probably the
simplest functions beneath constant ones are linear functions. In fact, Linear functions

are simple to
estimate but not
very expressive

the associated function class of many early learning algorithms like
the perceptron [76] was the class of all linear functions on the input
domain. This choice of function class is very restrictive in the sense
that only linear target functions on the domain can be approximated.
As soon as the true target function is non-linear, even the best linear
approximation to it might give bad predictions. In principle, there are
several ways to escape the realm of linearity. One very straightforward
way is to extend the function class to a non-linear one for which each
element is described by a set of parameters. For example, the learn-
ing algorithm could be allowed to use the set of all polynomials up to
some order n. Each polynomial f(x) =

∑n
k=0 akxk of order n can be de-

scribed by a set of n + 1 coefficients. The learning task would then be
to estimate those parameters such that the target values at the given
data points are appropriately approximated. The problem with this so
called parametric approach is that the desired function class might not
be easily parametrised or lead to a vast amount of parameters. If the
number of parameters to be estimated is large and the amount of given
training examples is small, the problem is under-determined. Then
the solution highly depends on the method used for ensuring a unique
solution.

Another way to deal with non-linear target functions is to use non- Non-linear func-
tions are more
expressive but
hard to estimate

linear transformations φk as features to encode the data points xi in
another representation (φ1(xi), ..., φn(xi)) in which the assumed target
function is linear f(x) =

∑n
i=1 aiφn(xi). The approach of changing the

data representation is called non-parametric. One drawback of chang-
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ing the representation explicitly is that the amount of functions φk

might be very large resulting in high computational costs and therefore
slowing down the learning and the prediction process. This is clearly
undesirable.

A very popular approach in machine learning that uses a non-linear Non-linearity by
changing the
geometry of the
space: The kernel
trick

transformation of the inputs but avoids the explicit computation of the
features φk is the so called kernel trick. It exploits the fact that many
learning algorithms can be formulated such that the data points enter
the algorithm only in terms of dot products. The canonical dot prod-
uct 〈x,x′〉 =

∑d
i=1 xix

′
i can then be replaced by an appropriate function

k(x,x′) which corresponds to a dot product between the non-linearly
transformed data points. The value of this dot product called kernel
can in most cases be obtained without explicitly computing the non-
linear transformation of the data points. In fact, most of the time the
situation is just the other way round: People plug a kernel into their
algorithms, for which they know that it corresponds to a dot product
between non-linearly transformed data points and do not care so much
about the explicit representation of the transformed data.

In the remainder of this section, kernels and their associated spaces
will be introduced more formally. In particular, it will be shown that
using kernels corresponds to mapping the data points to elements of a
so called reproducing kernel Hilbert space of functions, and carrying out
computations there. The material of this section is taken from [81, 85].

DEFINITION KERNEL: Let D be a nonempty set. A symmetric func-
tion k : D × D → R on D is called positive semi-definite kernel if for
any subset {x1, ..., xn} ⊆ D the Gram matrix (K)ij := k(xi, xj) is positive
semi-definite, that is

n∑
i,j=1

aiajKij ≥ 0 (1.2)

for all ai, aj ∈ R. An equivalent requirement is that all eigenvalues of K
are non-negative.

.

A kernel can be thought of as a similarity function between two el- Kernel as a
similarity function
between arbitrary
objects

ements of D. However, not every similarity function on D is a valid
kernel since the positive semi-definiteness requirement might be vio-
lated. There is no requirement for D other than being a nonempty set.
Therefore, a kernel allows for computing similarities between arbitrary
objects such as strings, graphs or probability distributions. Further-
more, as will be shown next, a kernel gives rise to a non-linear map-
ping into a Hilbert space of functions in which computations can be
carried out that potentially would not have been possible in D, because
D might not even be a vector space. Beyond that, if the kernel is chosen
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carefully, the transformation of the elements of D might bring forward
certain features that make it easier for the learning algorithm to learn
the desired target function, i.e. the elements of the training set are
transformed in a way such that a linear function on the transformed
examples is a good approximation of the target function.

The following paragraphs show how to construct a Hilbert space H
of functions for a given kernel. For this purpose, a mapping Φ is de-
fined that assigns a function to each data point. In a next step it is
demonstated that the image of the input domain D under the transfor-
mation Φ lies in a space of functions. Finally, this space will be turned
into a Hilbert space by constructing a dot product on it elements.

For a given kernel k the transformation that maps an element x ∈ D Kernels map ele-
ments of D to a
Hilbert space of
functions H

to a function is

Φ : D → H
x 7→ kx := k(x, ·),

where k(x, ·) is just the kernel k with one element fixed to x and H :=
span{kx|x ∈ D} (cf. 4.3) the space of functions that map D into R.
Clearly, kx is a function from D into R. The next step is to turn H into
a Hilbert space of functions by constructing a dot product that has the
so called reproducing property. This lets H become a reproducing kernel
Hilbert space (RKHS).

DEFINITION HILBERT SPACE
Let H be a vector space, i.e. a set closed under addition and scalar

multiplication that has the following properties for all h1, h2, h3 ∈ H and
a1, a2 ∈ R:

1. Commutativity: h1 + h2 = h2 + h1

2. Associativity of addition and scalar multiplication: h1 + (h2 + h3) =
(h1 + h2) + h3 and a1(a2h1) = (a1a2)h1

3. Additive and multiplicative identity: h1 + 0 = h1 and 1h1 = h1

4. Existence of an additive inverse: h1 + (−h1) = 0

5. Distributivity of scalar and vector sums: a1(h1 + h2) = a1h1 + a1h2

and (a1 + a2)h1 = a1h1 + a2h2

H is called a Hilbert space if it is endowed with a dot product 〈·, ·〉 :
H ×H → R that induces a norm ||h||H :=

√
〈h, h〉 such that the limit of

every Cauchy sequence of elements in H is also in H (for the definition
of Cauchy sequence see 4.3).

.

By definition, H := span{kx|x ∈ D} fulfills all the properties required H is a valid
Hilbert space of
functions

to be a vector space. The first step to turn it into a Hilbert space is to
define a dot product (for the definition of dot product see 4.3).
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Let f =
∑n

i=1 αikxi and g =
∑m

j=1 βjkxj be two functions for x ∈ D,
m,n ∈ N and αi, βj ∈ R, then the following bilinear function is a valid
dot product in H:

〈·, ·〉 : H×H → R

〈f, g〉 =
n∑

i=1

m∑
j=1

αiβjk(xi, xj)

〈·, ·〉 is obviously symmetric and bilinear. The positive semi-definiteness
follows from the positive semi-definiteness of k since

〈
n∑

i=1

αikxi ,

n∑
i=1

αikxi〉 =
n∑

i,j=1

αjαik(xi, xj)

(1.2)

≥ 0

One very important property directly following from the definition
of 〈·, ·〉 is that 〈f, kx〉 = f(x) for all functions f ∈ H. In particular, this
includes the special case 〈kx, kx′〉 = k(x, x′), which is called the repro-
ducing property.

As already stated in the definition of a Hilbert space, a dot product
induces a norm via || · ||H :=

√
〈·, ·〉. All that remains to do in order

to turn H into a proper Hilbert space is to make it complete. This
can be done by a simple mathematical trick as noted in [81]: All limit
points of Cauchy sequences are just included by definition. Therefore,
the mathematically correct definition is H := span{kx|x ∈ D}, where the
overline denotes the completion, i.e. the inclusion of all limit points.
From now on H is used in this sense.

Hilbert spaces have nice properties such as the possibility of defining Hilbert spaces
have particularly
nice properties

a projection (see [81] or 4.3). This will be very useful later, especially in
sections (2.4.1) and (2.4.2). Another very useful property when carrying
out computations with kernels is the Cauchy-Schwarz inequality

|〈kx, kx′〉|2 = |k(x, x′)|2

≤ k(x, x) · k(x′, x′).

The proof can be found in [81].
By virtue of the properties of H and the transformation Φ, all learn- The kernel trick:

Replace dot prod-
ucts with kernels

ing algorithms that can be stated such that the data points solely enter
the algorithm in terms of dot products, can implicitly work in a Hilbert
space of functions by simply replacing all dot products by the kernel
function k. The resulting function is linear in H, but due to the non-
linear transformation of the data points via Φ, the resulting function
is actually non-linear in D. This combines two advantages: On the
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one hand non-linear functions can be learnt, while on the other hand
all mathematics valid for linear functions and spaces can be used for
backing the algorithms with sound theory.

An important theorem by Kimeldorf and Wahba and its generalised Learning in infi-
nite dimensional
kernel spaces:
The representer
theorem

version by Schölkopf and Smola [50, 81], called representer theorem,
ensures that all learning algorithms that can be formulated in a certain
way8 have a solution that can be expressed as a linear combination of
the training examples transformed by Φ. Since the number of training
examples is finite, H might even be infinite dimensional without prob-
lems. Only a finite dimensional subspace spanned by the data points
has to be searched for a solution of the learning problem and the learn-
ing process is reduced to finding the coefficiensts for the linear com-
bination of kernel functions. When evaluating the learnt function at a
given point, only this linear combination of kernel functions between
the training points and the new point has to be computed.

1.5 Regularisation

1.5.1 General regularisation

As stated in 1.3.2, there are basically two reasons why a learning al- Two needs for
regularisation:
Uniqueness and
prior information

gorithm must make assumptions about the domain of target functions
it is supposed to approximate. The first is the ill-posedness of the in-
verse problem: Datasets of finite size are mapped to a function that is
supposed to describe a general relation between the labels and the dis-
tribution of the data. When dealing with a finite amount of data several
solutions are possible and therefore the inverse problem might not be
uniquely solvable. The second reason is given by the No-Free-Lunch
Theorem saying that the only chance to perform better than random
guessing is to make (correct) assumptions about the class of possible
target functions. The same problem applies to Bayesian learning: Many
functions might have the same likelihood PF|L(f |L) making the solution
non-unique as well. As noted in 1.3.3, learning algorithms incorpo-
rate prior knowledge in various ways in order to avoid the above two
problems. This incorporation of general assumptions about the tar-
get function is called regularisation. This section presents a more for-
mal overview about regularisation in Bayesian and Frequentist learning
and points out some links between them. Starting with the Bayesian
way of regularising problems, the link to regularisation in Frequentist
formulations of learning problems is established. In addition, the rep-
resenter theorem for both cases is stated. At the end of this section,
the special case of choosing an RKHS of functions and its relation to
regularisation is discussed briefly.

8The class of learning algorithms which the representer theorem covers is actually
very large.
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Probably the most straightforward way of implementing prior knowl- Regularising with
a prioredge into a learning problem is to use a prior over functions or - equiv-

alently - a prior over parameters of functions. This is the essence of
Bayesian regularisation. Given a data set L, a likelihood function PL|F
in terms of a noise or observational model and a prior PF, the posterior
probability of a function f describing the data after seeing L can be
calculated by Bayes rule

PF|L(f) =
PL|f (L)PF(f)∫
F PL|F(g)dg

=
PL|f (L)PF(f)

EF[PL|F]
,

where F denotes the set of functions which is accessible to the learning
algorithm. Since the denominator does not depend on f , the posterior
only depends on the nominator up to some multiplicative normalisation
constant Posterior ∝ Like-

lihood × Prior:
The Posterior is
the likelihood
reweighted by
prior beliefs

PF|L(f) ∝ PL|f (L)PF(f).

The posterior can therefore be seen as the likelihood reweighted by the
prior. If the likelihood has several maxima for a given L, the maxi-
mally likely function is the one with maximum product of prior and
likelihood. This method of estimating a function is called maximum a
posteriori (MAP). If the prior is flat, i.e. does no prefer any value, it does
not influence the solution and the resulting function will be the one
with maximum likelihood. This is exactly what is done in maximum
likelihood estimation (ML). In general, a prior does not necessarily make
the problem uniquely solvable. Nevertheless, when not being flat, it
implements an assumption about possible target functions. Figure 1.3
shows a simple example for the effect of a prior on the MAP estimation
of a function. In this case, the prior has been chosen badly since it
strongly prefers target functions that are different from the true one
generating the data.

Another a priori assumption implicitly made in Bayesian and Fre- Regularisation by
choice of function
class

quentist learning is the choice of the function class that is admissible
to the learning algorithm. In parametric function estimation the fam-
ily of functions is fixed to functions that can be described on a fixed
form in terms of the parameters. The distributions are then specified
in terms of the parameters.

The most famous example for non-parametric Bayesian function es-
timation are Gaussian Processes [73]. A Gaussian Process is a distri-
bution over functions that is fully specified by a mean and a covariance
function. Here, the corresponding function class is chosen via the co-
variance function. In general, Bayesian estimation does not estimate a
single function but a distribution over functions instead, which is then
used to predict function values at new points.



CHAPTER 1. INTRODUCTION 24

 

 Likelihood P(L|f)
Prior P(f)
Posterior P(L|f) P(f)

Figure 1.3: Toy example for regularisation by a (bad) prior. A few points xi ∈ R have

been sampled from the real line and the corresponding outputs have been generated via

yi = xi + E with E ∼ N (0, 0.1). The considered functions are all possible linear functions

without offset f(x) = cx with a prior Pc(c) = 1
0.2

√
2π

exp
“
− |c−0.2|2

2·0.22

”
. The likelihood

was chosen to be PY|x,c(y) = 1
0.1

√
2π

exp
“
− |c·x−y|2

2·0.12

”
for a single datum and PL|c(L) =Qn

i=1 PY|xi,c(yi) for all observations. All density functions have been normalised to the

same height for illustrative reasons. The right figure shows the resulting regression

functions. The blue line corresponds to the value cML of C with maximum likelihood,

while the green line corresponds to the maximum a posteriori value cMAP . While the

data points have a great influence on the choice of regression function, the prior twists it

a little bit towards its most probable value. Therefore, the solution is a trade-off between

observed data and prior belief.

As already noted in 1.3.3, there is a close link between a likeli- Link between
Bayesian and
Frequentist
regularisation

hood and a loss function. There is also a close link between Bayesian
regularisation and standard Frequentist regularisation. In Frequentist
learning the problem is mostly expressed as an optimisation problem
over functions that involves two terms, a regularisation term Ω[f ] and
a loss term, which measures the performance of the current function
on the data:

minimise F [f ] = λΩ[f ] + Loss[f,D], (1.3)

where λ is a parameter that controls the trade-off between the regu-
larisation and the loss term. Assuming that the examples have been
drawn identically and independently (i.i.d), the loss term decomposes
into a sum over the loss function ` on the single data items:

minimise F [f ] = λΩ[f ] +
m∑

i=1

`[f, di],
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with di = (xi, yi) in supervised learning and di = xi in unsupervised
learning. The case of semi-supervised learning is somehow special and
will be treated in section 1.5.2. In almost all cases the regulariser Ω
is expressed as a norm on the result of an operator D applied to the
function f :

minimise F [f ] = λ||Df ||+
m∑

i=1

`[f, di].

Very often the squared norm of the function is taken instead, which
does not make any principal difference. This special form of the prob-
lem, though covering a large portion of existing learning algorithms,
has a intimate relation to the Bayesian MAP estimation of a function
(see e.g. [70, 92, 81]). If the prior over functions is given as a Gaussian
in the range of the operator D, i.e. PF(f) ∝ exp(−||Df ||2), and assuming
a certain noise model PD|f (D) =

∏m
i=1 P(`(di)|f) ∝

∏m
i=1 exp(−`[f, di]), the

negative logarithm of the posterior has the following form

− log PF|D(f) ∝ log

(
exp(−||Df ||2) ·

m∏
i=1

exp(−`[f, di])

)
(1.4)

= ||Df ||2 +
m∑

i=1

`[f, di],

recovering the form of a Frequentist estimation problem. In general,
however, PD|f (D) =

∏m
i=1 exp(−`[f, di]) is not necessarily a proper density

since it might not integrate to one. In practice, however, this does not
pose a problem in most cases.

The assumptions made about functions in the Frequentist setting
are encoded in the type of operator and norm considered. Since ||Df ||2
is minimised, functions that have a small norm under D are favored
by the optimiser. In this sense, D and ||.|| are used to express one’s
uneasiness about certain functions by choosing D and ||.|| such that
those functions will cause ||Df ||2 to be large. Nevertheless, as long as
||Df ||2 < ∞, the function can still be chosen when strongly suggested
by the loss term, just like in the Bayesian case when dealing with a
likelihood and a prior. The case in which the prior is zero corresponds
to ||Df ||2 = ∞, i.e. the function f cannot be the solution of the learning
problem.

A special case, though very widely used, is when the functions live Regularisation in
an RKHSin an RKHS H of functions and the corresponding norm of that RKHS

|| · ||H is used to regularise the problem. The most prominent exam-
ple in Bayesian learning are Gaussian processes [73] using the ker-
nel function as covariance function. Together with an appropriate
noise model this leads to a representation of the learnt function as
f∗ =

∑m
i=1 αik(xi, ·), where x1, ..., xm are the training inputs. The co-

efficients α1, ..., αm are obtained when computing the posterior for the
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function value of a new input given the training data. In the most
widely used form, the noise model for regression is Gaussian. The
noise models for classification are more involved.

In Frequentist learning the optimisation problem has the form of
equation (1.3) with Ω[f ] = Θ(||f ||H), where Θ : [0,∞) → R is a strictly
monotonic increasing function and f ∈ H with the representation f =∑

x∈X αxk(x, ·). While it is clear from the calculation of the posterior
of Gaussian processes that the resulting function can be written as a
linear combination of kernels, it is a priori not obvious that the min-
imising function f∗ of

minimisef∈HF [f ] = Θ(||f ||H) + Loss[f,D] (1.5)

also has this representation. But this is in fact the case. The famous Solutions to reg-
ularised problems
in RKHS: The rep-
resenter theorem

representer theorem and later generalisations [50, 81] state that the
minimiser f∗ ∈ H admits the representation f∗ =

∑m
i=1 αikxi just as

for Gaussian Processes. The theorem is very general since the proof
does not even require Loss[f,D] to be a sum over single loss terms.
Therefore, it allows for coupling the single items di = (xi, yi) or di = xi.
The proof decomposes a possible solution f into a part f|| that lies in
the span of functions kxi and a part f⊥ that is orthogonal to it, mean-
ing 〈f⊥, kxi

〉H = 0 for all kx1 , ...., kxm
. It then shows that the values

f(xj) at the training points can be expressed as a linear a combina-
tion of kxi(xj) = k(xi, xj) and that the regulariser Θ(||f ||H) cannot in-
crease by setting f⊥ = 0. Therefore the best choice for the regulariser is
f∗ =

∑m
i=1 αikxi which has f∗⊥ = 0. This has the important implication

that, even though the RKHS of functions might have infinitely many
dimensions, the solution lies in the span of the training points and is
therefore determined by a finite number for coefficients α1, ..., αm .

As already noted, the choice of the norm || · || for the regulariser The choice of the
kernel determines
the regularisation
properties

determines the properties of the functions that are favored. There-
fore, the choice of the kernel and its RKHS determine the properties
of the regulariser. This might be hard to judge in the somewhat artifi-
cial construction of an RKHS of functions as in section 1.4.1. In fact,
for certain types of kernels it is possible to define an operator Υ that
maps the elements of the RKHS to another space A with a correspond-
ing dot product that has the same value as the dot product associated
with H, i.e. 〈f, g〉H = 〈Υf,Υg〉A for all f, g ∈ H. The advantage of map-
ping functions from H to another space via Υ is that it allows to state
the regulariser in terms of Υ and the norm in A, which is often more
amenable to an intuitive interpretation. For example, the dot product
of two functions f, g in the space spanned by a translation invariant
kernel, i.e. a kernel that can be expressed as a function of x − x′ for
x, x′ ∈ RN , can be expressed as

〈Υf,Υg〉A = (2π)
N
2

∫
Ω[v]

F [f ](ω) · F [g](ω)
v(ω)

dω.
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Here, F [f ](ω) denotes the Fourier transformation of f , Ω[v] the sup-
port of the function v and · denotes complex conjugation. The func-
tion v(ω), a nonnegative function, which is symmetric around zero and
approaches zero as ω → ∞, is given by the Fourier transform of the
kernel. In this representation it is easier to see that the norm in H
favors functions that have a high value for v(ω) and that functions out-
side the support Ω[v] cannot be a solution to the regularised learning
problem. Therefore, the regulariser favors functions with large low fre-
quency and a small high frequency components. Intuitively, such a
function will not dither much and is therefore smooth.[81] treats this
topic in more detail.

A possible drawback of the form of regularisers as shown in equa- ||Df || regularis-
ers are agnostic
to the specific
data distribution

tions (1.3) and (1.5) is the lack of reference to the data distribution that
might possibly add valuable information about the learning problem.
This means that the form and therefore the implicit assumptions made
by the regulariser is the same for all problems. According to the No-
Free-Lunch Theorem this cannot work in all cases. Data-dependent
regularisers, which try to overcome this problem by incorporating addi-
tional data points in the regulariser, are treated in the following section.

1.5.2 Data-dependent Regularisation

This section reviews existing approaches for using additional data to
regularise a learning problem. Rather than claiming to be complete,
this review intends to show a few examples from a broad spectrum of
methods for data-dependent regularisation.

In general, the influence of the additional data on the selection of
the function is structurally built into the algorithm, while the choice In data-

dependent
regularisation,
the regulariser
becomes a func-
tion of additional
data points

of a certain function depends on the specific instance of additional
data used in the respective machine learning problem. Thus, instead
of specifying a general criterion such as smoothness, the regulariser
is also a function of the additional data. Varying the data therefore
changes the regulariser. The regulariser can be adapted to a specific
learning problem by passing a dataset, which meets the assumptions
made in the design of the data-dependent regulariser, to the learning
algorithm.

In almost all cases, the additional data is assumed to be drawn from In most cases,
additional knowl-
edge is knowl-
edge about
PX

the same distribution PX as the inputs of the labelled data. This means
that the additional knowledge the algorithm gets is knowledge about
PX. When enough unlabelled data is available, one could even attempt
to estimate the input distribution. Since the data is supposed to reflect
the input distribution, PX itself is often used in the derivation of the
algorithm or in a theoretical analysis of the benefits from PX.

In order to profit from the unlabelled data, the structure of the al-
gorithm must be built in a way such that information about its distri-
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bution is used by the algorithm. This is not natural for all algorithms.
For instance, in Bayesian classification there are two ways of estimat-
ing the label y for a given input point x. In a generative model PX|Y the
label y is thought of as a hidden state determining the generation of x.
Inference of the label corresponds to inferring this state by taking the
one that makes a given x maximally probable. However, these models
are often difficult to estimate [83].

Discriminative models PY|X, which model the dependency between Conventional
Bayesian discrim-
inative models
ignore additional
information about
PX

the inputs and the labels in the opposite way, are often more robust
and easier to estimate. Unfortunately, in their standard form they
have the inherent drawback of not using additional information about
the input distribution PX at all, because the distribution and the la-
tent function which shall be inferred are independent. This means
that information from additional unlabelled data is not used at all by
a standard discriminative model. [83] proposes a solution by changing
the structure of the model such that the latent target function becomes
a priori dependent on the input distribution. This example illustrates
that the relation between the choice of the function and additional data
has to be structurally fixed in the algorithm and defines the aspects of
the data the algorithm is supposed to use.

Another example for a structurally fixed relation between the choice The cluster
assumptionof a function and the additional data points is the so called cluster

assumption. Many semi-supervised classification algorithms assume
that the data points of each class cluster. Consequently, the decision
boundary should cut through regions of low data density, i.e. not cut
through a cluster. The data density is measured with the help of unla-
belled data points from the joint distribution of both classes.

In [16] the authors estimate a conditional distribution QY|X of labels Information Regu-
larisationgiven the data points by covering the space of x with a set T of over-

lapping regions T and penalising the deviation of QY|X on unlabelled
examples from the values of labelled examples in that region by the
Kullback-Leibler divergence [18] between the conditional QY|x and the
best common choice QY|T across all examples in that region:

minimiseQY|X

∑
x∈T

PX|T (x)
∑
y∈R

QY|X(y|x) log
QY|X(y|x)
QY|T (y)

.

Assuming that the joint distribution is given by QX,Y(x, y) = PX|T (x)QY|X(x, y),
this can be seen as minimising the mutual information between X and
Y. Multiple regions are incorporated by minimising a weighted sum
over all regions. The weights are chosen beforehand or can be calcu-
lated from a prior over the examples by using the probability mass of
a region with respect to that prior as its weight. Here, the unlabelled
examples are assumed to be from the same unknown distribution PX

as the labelled training examples. In this regularisation scheme, called
information regularisation, all examples lying inside one region are a
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priori assumed to be equivalent, i.e. to have to same labels. Therefore,
the regions play a role similar to clusters in the cluster assumption.
However, the approach seems more general since it allows to specify
a topology via T and minimise the information induced between the
data points and their labels relative to that topology. Due to the over-
lap of the regions label information can be passed between regions by
examples lying in the intersections, i.e. the QY|X should have a bias
towards the same label in both regions since the way of regularisation
favors distributions with constant labels over one region. Thus, the
additional unlabelled examples influence the choice of QY|X.

Another way of using unlabelled data from the input distribution PX Metric-based ap-
proachesis proposed in [82]. Given a set of m labelled and one of u unlabelled

data points, the authors use the additional data to induce two (pseudo)
metrics on the space of hypothesis:

d(f, g) := ϕ

„Z
` (f(x), g(x)) dPX

«
≈ ϕ

0@ 1

u

uX
j=1

` (f(zj), g(zj))

1A =: d̃(f, g)

d(PY|X, h) := ϕ

„ZZ
` (h(x), y) dPY|XdPX

«
≈ ϕ

 
1

m

mX
i=1

`(h(xi), yi)

!
=: d̂(PY|X, h),

where ϕ is an associated normalisation function that recovers the stan-
dard metric axioms. The two metrics become real metrics, if PX is ev-
erywhere strictly greater than zero. If PX has no mass at some points
on the space, two functions might have zero distance although they are
not identical. Using the two metrics and an arbitrary origin function φ,
the authors define two general objectives for learning algorithms:

minimiseh d̂(h,PY|X) + |d̃(φ, h)− d̂(φ, h)|

minimiseh d̂(h,PY|X) + max

{
d̃(φ, h)

d̂(φ, h)
,
d̂(φ, h)
d̃(φ, h)

}
The intuition behind those two objectives is that the behavior of a func-
tion on the unlabelled examples should be similar to the behavior on
the training dataset. This is measured by the distance to the origin
function φ. In contrast to information regularisation, this method does
not assume any specific kind of structure on the data, like the as-
sumption that the function values should be equal in some predefined
neighborhood. It is only assumed that the unlabelled data points are
sampled from the same distribution PX as the training examples. Since
the distance between the functions off the training set is measured
on the unlabelled examples, the choice of a specific hypothesis h by
the learning algorithm is influenced by the instances of the unlabelled
examples, because they determine the important points where the dis-
tance should be small.

[6, 7] investigate how the knowledge of PX can in theory be used
to augment the performance of binary classifiers under the cluster as-
sumption. The authors propose three methods to use this assumption
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together with PX: a density based approach, where PX is incorporated
into the classifier; a geometry based approach, where the distances are
modified locally in order to take PX into account; and a method based
on spectral clustering, where the first eigenvectors of a weighted graph
adjacency matrix give rise to a representation of the data points that
takes into account their manifold and cluster structure. Only the first
two approaches are described in the following.

The first approach joins a general smoothness requirement with the Implementing the
cluster assump-
tion by modifying
the regulariser
with the density

cluster assumption by penalising the norm of the gradient weighted by
the density ||PX∇f || during the optimisation of the learning algorithm.
Intuitively, a small gradient leads to a smooth function since the func-
tion cannot vary much locally. By incorporating the input density,
the minimisation of the gradient becomes more important in regions of
high density and is completely ignored in regions with zero probabil-
ity mass. This preference for a small gradient in high density regions
makes it difficult for the function to change the label in those regions
and therefore implements the cluster assumption.

The geometry based approach locally changes the metric of the Eu- Implementing the
cluster assump-
tion by changing
the geometry of
the space

clidean space such that points that can be joined by a path which does
not cut low density regions are put closer together. This implements
the cluster assumption since the points that lie inside a common clus-
ter are contracted towards each other. Here, the Euclidean space is
seen as a Riemannian manifold with a metric tensor representing the
normal Euclidean distance. A Riemannian manifold also forms a met-
ric space when considering the geodetic distance, i.e. the length of Weighting with

the density and
changing the
geometry is
equivalent

the shortest path joining two points. By locally reweighting the metric
tensor with the inverse density 1

PX
, paths through low density regions

become longer, while paths inside high density regions become shorter.
As the authors show, the density based and the geometric approach
are in fact equivalent, i.e. changing the measure and keeping the ge-
ometry or changing the geometry and keeping the Lebesgue measure
leads to the same regulariser.

A usage of the input density PX which is completely opposite to the Fading between
trusting the data
and relying on
prior knowledge
by using PX

density based approach of [6, 7] is investigated in [11]. Here, the au-
thors use a special kind of regulariser involving the Radon Nikodym
derivative [24] which can be interpreted as penalising the norm of the
first derivative of the function inversely scaled by the input density.
The intuition behind scaling the first derivative with one over the den-
sity instead of the density itself, as in the implementation of the cluster
assumption, is that the learning algorithm should trust the data in
regions where the input density is high and give more weight to the
smoothness requirement of the regulariser in regions with low density.
The smoothness requirement is realised by the first derivative. It seems
quite interesting that the implementation of this assumption compared
to the cluster assumption interchanges the areas of heavy regularisa-
tion. Since the regulariser corresponds to prior assumptions about the
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problem, scaling inversely with the input density can be seen as fading
between strong trust in the data, whenever it is available, and reliance
on the prior assumption if the data density is low. Interestingly, the
solution of a problem regularised in such a way is a linear combination
of radial and sigmoid functions. Those kinds of expansions have been
successfully used in neural networks. The results of [11] could be seen
as a mathematical reason for their good performance in practice.

In an interesting practical approach of using a priori knowledge from Biased Regular-
isation: Using a
Gaussian prior
with nonzero
mean.

labelled data of the same distribution, i.e. (x, y) ∼ PXY is shown in
[49] for the problem of personalised handwriting recognition. Here, the
problem is to adapt a classifier to a specific style of handwriting with
a very low number of labelled examples from that specific handwrit-
ing. The authors solve the problem by condensing a huge digit dataset
with all sorts of handwriting styles into a generic linear classifier w0.
When adapting this generic classifier to a specific style of handwriting,
the prior knowledge about digits, represented by w0, is used to bias
the new solution w towards w0 by using the regulariser ||w − w0||2.
As noted in section 1.5.1, minimising a squared norm regulariser and
some noise model corresponds to the MAP estimate with a Gaussian
prior w ∼ PW ∝ exp(||w||2). Using ||w − w0||2 instead of ||w||2 means
using a Gaussian prior with mean w0. This makes perfect sense since
the best guess for a classifier before having seen a single digit from the
new handwriting style is w0.

In the following chapter, one specific algorithm that makes use of
additional data which is not from PX is introduced and analysed. In
the experimental chapter it is applied to real world problems, while the
focus lies on the approrpiateness for neural applications.
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The Universum Algorithm

2.1 The Universum Idea

2.1.1 VC Theory and Structural Risk Minimisation (SRM)
in a Nutshell

This sections presents a brief overview about VC theory (Vapnik Chervo-
nenkis theory) of statistical learning and the structural risk minimisation
(SRM) principle for inductive and transductive learning building upon
SRM. These basics will be needed in section 2.1.2 to understand the
original idea for inference with a Universum by Vapnik [14, 99, 103].

The central goal of each supervised learning problem is to find a Risk minimisa-
tion: Minimise
the expected loss
with respect to
PXY

function f or a distribution over function values PF|X that minimises
the risk R. The functional R is the expected error of a function with
respect to the underlying distribution PXY on the domain D ×R and a
loss function `:

R[f ] =
∫
D×R

`(f(x), y)dPXY(x, y). (2.1)

However, since the underlying distribution PXY is unknown, directly
minimising the true risk (2.1) is not possible. The Bayesian learning
framework tries to address this problem by making prior assumptions
about the underlying distribution and estimating a posterior distribu-
tion PF|X,L over functions given training data L = {(xi, yi)}i=1,...,m. When
predicting a new label ŷ, the minimising value of the expected risk with
respect to the posterior Bayesian ap-

proach: Minimise
the risk with
respect to the
posterior

ŷ := argminy∈YEF|x,L[`(F(x), y)]

is chosen. If the assumptions about the underlying distribution and
the noise made by the choice of the prior and the likelihood are correct,
this is the optimal strategy [23, 106].

32



CHAPTER 2. THE UNIVERSUM ALGORITHM 33

Frequentist learning addresses the problem of minimising (2.1) with-
out employing distributions, by directly estimating a single function f .
A naïve approach for minimising the risk with a single function f would Frequentist ap-

proach: Find a
single function
that minimises
the risk

be to replace the integral in (2.1) by a sum over all examples in the
training set and to minimise this quantity, called empirical risk Remp,
instead:

Remp[f ] =
1
m

m∑
i=1

`(f(xi), yi). (2.2)

The hope behind this strategy, called empirical risk minimisation, is
that the empirical risk Remp will converge to the true risk (2.1) by the
law of large numbers as the size m of the training set tends to infinity.
This property is called consistency in statistics [81]. However, without Empirical risk

minimisation is
not consistent

any assumption about the class of target functions, the empirical risk
does not carry any information about the value of the true function on
locations x 6∈ L that are not in the training set, and it turns out, in fact,
that without any additional assumptions, empirical risk minimisation
is not consistent [81]. When looking at the No-Free-Lunch theorem (see
1.3.2) this does not seem suprising.

The difficulties with empirical risk minimisation can be illustrated
with a little example taken from [81]: If a learning algorithm is allowed
to use the class of all functions, it can always achieve Remp[f∗] = 0 with
the simple function

f∗(x) =
{

yi if x = xi for some xi ∈ {xi}i=1,...,m

1 else .

Since f∗ has constant output on all examples that are not in the train- Worst case over
all functions
in the class
determines the
consistency of
empirical risk
minimisation

ing set, it will perform terribly as a predictor.
The main insight of VC theory is that the worst case over all func-

tions admissible to a learning algorithm determines the consistency of
empirical risk minimisation [81]. This means that the one-sided uni-
form convergence of the empirical risk to the true risk over all functions
in the considered function class F ,

lim
m→∞

P(sup
f∈F

(R[f ]−Remp[f ]) > ε) = 0,

is a necessary and sufficient condition for the consistency of empirical VC-theory: Bound
largest difference
between true and
empirical risk in
terms of the com-
plexity of F

risk minimisation. The key idea of VC-theory is to bound the quantity
P(supf∈F (R[f ]−Remp[f ]) > ε) in terms of a measure for the complexity or
capacity of the considered function class F . The intuition behind this
is that if the complexity of F is low, i.e. the ability of F to fit arbitrary
values is weak, the value of Remp[f ] can tell something about R[f ] since
it cannot happen that the elements of F vary too much.
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One such bound in terms of the number of training examples m, the
admissible function class F and ε > 0 is:

P(sup
f∈F

(R[f ]−Remp[f ]) > ε) ≤ φ(m,F , ε),

Given this bound, it is possible to derive confidence intervals for R[f ]−
Remp[f ] by setting the left side to some value 0 ≤ δ ≤ 1 and solving for ε
[81]. This results in a statement like Bounds yield con-

fidence intervals
for the true riskR[f ] ≤ Remp[f ] + φ′(δ,m,F) (2.3)

which holds for all functions in F with probability 1− δ. In both cases,
F enters in φ and φ′ via the capacity measure, where φ′ is increasing
in the capacity of F and decreasing in m and δ. Thus, the higher the
capacity of F , the looser is the bound on the difference R[f ]−Remp[f ].

In order to guarantee a low upper bound on the risk R[f ], a learning
algorithm has to minimise the right hand side of 2.3. However, min-
imising φ′(δ,m,F) requires the limitation of the capacity of F . Since
the capacity measures are functions of the function class F and not
a single element f ∈ F , the limitation cannot be achieved via the
optimisation over single functions in F . Instead, a structure on F Structual Risk

Minimisation: Op-
timise (2.3) over
nested subsets of
functions

has to be built. A structure on F is a system S of nested subsets
... ⊂ Sd−1 ⊂ Sd ⊂ Sd+1... ⊂ F with increasing size and capacity, where
each subset Si ⊆ F has a fixed maximal capacity. The goal of structural
risk minimisation (SRM) is then to select an element S∗ of the structure
that has low empirical training error (in order to bound the first term
of (2.3)) and low capacity (in order to bound the second term of (2.3))
where φ′(ε, m,F) is replaced by φ′(ε, m, S∗). Building such a structure
is clearly a rather conceptual setting. In practice, bounds like (2.3) are
used to design regularisers that are a trade-off between statistical op-
timality and practicability from an engineering point of view. A popular
example are Support Vector Machines (SVM) that are motivated by an
upper bound on a capacity measure called VC dimension. This upper
bound is established in terms of the maximal distance of the closest
training point to the hyperplane that separates the two classes. This,
in turn, boils down to searching for the normal vector of a separat-
ing hyperplane that has minimal Euclidean length, as achieved by the
regularisation of the normal vector with || · ||22.

The structural risk minimisation described above refers to the set- Transduction:
Structural Risk
Minimisation
on a finite set
of equivalence
classes

ting of inductive learning, in which the objective is to infer a function on
the entire domain D of the data points. In the transductive setting the
goal is merely to predict the labels for a given fixed set of test points.
Predictions on other points than the specified test examples are not
of interest for transductive learning. In this case structural risk min-
imisation boils down to building a similar structure on a finite set of
equivalence classes F1, ..., FN on F . The equivalence classes Fi arise
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since there is only a finite number of possible labellings of the training
and test set. All functions that label the training and the test set in
a certain way cannot be distinguished from their function values on
the given data and are therefore considered equivalent. If the training
set contains m and the test set n examples, there is a finite number
of different labellings N of the training and the test set which is at
most N ≤ |Y|m+n. Labelling the test set then corresponds to choosing
any function from an appropriate equivalence class and use that for
predicting the unknown labels. Similar to the case of structural risk
minimisation for inductive learning, the equivalence classes Fk are or-
ganised into a structure according to a chosen capacity measure, i.e.
each element Sk of the structure contains all equivalence classes that
have a certain maximal capacity. The goal of structural risk minimisa-
tion is then similar to the one of inductive inference, which is selecting
an element S∗ of the structure that has low empirical error on the la-
belled training set and low capacity. Here, the capacity increases with
the index k of the element Sk of the structure. Probabilistic bounds Confidence

bounds for trans-
duction use the
number of equiv-
alence classes
instead of the
capacity measure

similar to those in inductive inference can be derived [98], which use
the number of equivalence classes Nk of an element Sk instead of the
capacity measure:

R(train∪test)
emp [Fr] = R(train)

emp [Fr] + φ̃(Nk, η,m), (2.4)

where the bound holds with probability 1 − η and Fr ∈ Sk (see [14, 99,
100, 98] for the actual bounds). The function φ̃ is increasing in Nk

and decreasing in η and m. The important fact is that R
(train∪test)
emp [Fr] The type of ca-

pacity measure to
build up the struc-
ture does not mat-
ter

depends solely on the number Nk of equivalence classes in the chosen
element Sk, no matter which capacity measure was used to build the
structure.

The key idea for inference with the use of an additional dataset
called Universum is to employ this set to build up the structure S on
F1, ..., FN , i.e. to use a capacity measure based on the Universum. Since
the specific instance of this dataset influences the way the structure S Structural Risk

Minimisation with
a Universum is
data-dependent
regularisation

is built, it also has an impact on which equivalence class will be consid-
ered optimal. Therefore, structural risk minimisation with a Universum
becomes an instance of data-dependent regularisation. The following
section 2.1.2 describes the idea of inference with a Universum in more
detail.

2.1.2 The original Universum Idea by Vapnik

This section presents the original idea by Vapnik [14, 103, 100] of us- The original idea
of a Universum
is a set of data
points from the
same problem
framework, but
not from the same
distribution as
the labelled data.

ing an additional dataset U for regularisation which is not necessarily
from the same distribution as the training data as it is the case in semi-
supervised or transductive learning. Vapnik calls this set U the Univer-
sum, stressing the intuition that it is supposed to embed the learning
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problem into a larger framework of problems specified by U. One ex-
ample of such a set would be a collection of various digits, letters and
symbols, used as additional data for the classification of two other dig-
its. So far, the Universum idea is restricted to supervised classification.
Therefore, only this case is discussed in this thesis.

As already mentioned in the preceding section, the idea of trans-
ductive inference is to build a structure on a finite number of equiv-
alence classes F1, ..., FN given a certain training and test set, instead
of building such a structure on an infinite object like most function
classes. One very useful fact is that the second term in the prob-
abilistic error bound (2.4) does not depend on how the structure S
was built on F1, ..., FN , but only on on the number Nk of equivalence
classes contained in the chosen element Sk. This means that a bound
in the flavor of (2.4) is still valid if the structure S was build using an-
other quantity to group the equivalence classes instead of the capacity
measured by e.g. the margin on the training and test data [98]. For
example, given a prior distribution PF over functions in F , one pos- Possible ways to

build a structure
S ond F

sibility would be to arrange the F1, ..., FN according to the probability
mass µ(Fk) =

∫
Fk

dPF(f) contained in Fk. Following that strategy, an
element Sk ∈ S would get assigned all equivalence classes Fi that have
µ(Fi) ≥ ak with ak−1 > ak > ak+1. Instead of selecting the element with
good training error and low capacity, one would select the element with
low training error and large probability mass. However, in most cases
defining a prior might not be obvious and handling the integrals for
computing the probability mass will probably be intractable in many
cases. Now, the main point of Vapnik’s idea is to use the Universum
set U for building the structure.

As already mentioned, the Universum can be thought of as a set
from the same domain D and ”problem category” as the training and
test points, but not from the same distribution. To pick up the example
from above: The learning task could be to classify pictures of handwrit-
ten fives and eights. In this case the Universum could be everything
that could be perceived as a digit but is neither a five nor an eight (This
is the reason for the name Universum: It was thought of as a super-
set of objects the examples at hand are drawn from). Intuitively, those
data items carry some prior knowledge about the considered learning
problem, like certain transformation in the data one wishes to be in-
variant against or simply that the classification function should not be
supported in regions of high Universum density. How could it be used Two possible

ways to use
a Universum:
Maximise the
VC-entropy on
it, or maximise
the number of
contraditions on
it

to build a structure on the set of equivalence classes? Vapnik proposes
two related approaches. The first is to group the single Fi according to
their VC entropy [14, 103, 100] on the Universum, that is the logarithm
of the expected number of different labellings ∆Fi that Fi can realise on
q points sampled from the distribution PU of the Universum:

HFi

PU
(q) = log E(U)q [∆Fi(U1, ...,Uq)].
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The VC entropy is a quantity that depends on the considered set
of functions Fi, the distribution of the data points PU and the number
of sampled points q. It measures the diversity of functions from the
considered class Fi. Vapnik gives the following intuition for using this
approach [98]: When being concerned with a specific learning problem,
the resulting classifier should avoid making a statement about other
learning problems from the same category. In some sense, it should Intuition: Be

unspecific about
any other problem
than the one that
is being solved.

be as unspecific as possible about any other problem than the one it
is being trained on. Therefore, specifying a Universum takes the role
of using prior knowledge from the prior distribution of functions PF, as
in the Bayesian approach, by preferring those equivalence classes that
are most unspecific about any other problem that could be defined on
the Universum points.

Unfortunately, the employment of the VC entropy suffers from the Maximum number
of contradictions
is used to ap-
proximate the VC-
entropy

fact that the distribution PU of the Universum is unknown. Vapnik
[98] proposes to relax the measure by replacing the VC-entropy by the
number of contradictions an equivalence class produces on the given
Universum set U. A point z ∈ U counts as contradiction if there are two
functions in Fi that classify z in two different ways. An immediate con-
sequence is that the maximal number of contradictions is bound from
above by |U|. In that respect, it agrees with HFi

PU
(q) since the maximal

number of different labellings Fi can realise on q points is 2q, therefore
E(U)q [∆Fi(U1, ...,Uq)] ≤ 2q, and thus log E(U)q [∆Fi(U1, ...,Uq)] ≤ q. Now, the
goal of structural risk minimisation with a Universum is to choose the
element S∗ of the structure that has low training error and maximal
number of contradictions1 on U since the goal is to have maximal diver-
sity on U. The maximal diversity can be seen as making no statement
about the labels of the points in U. But even this simplification might
still be hard to implement into a learning algorithm. The next section
presents a further approximation as proposed by [103].

2.2 Implementing the Universum into SVMs

This section describes the implementation of the Universum idea. Al-
though, in principle, the implementation into many algorithms is con-

1One might be tempted to relate the number of contradictions as proposed by Vap-
nik with the philosophy of Karl Popper [72, 71], who classifies a theory according to
the possible number of sentences that can be derived from it and that might falsify it.
Popper argues that empirical sciences should aim for theories that are potentially easy
to falsify due to the large number of predictions that can be deduced from this theory
which might contradict empirical observations, since those are the theories with maximal
empirical content. However, this comparison is not justified, since Popper refers to pos-
sible contradicting observations from the same distribution of data the theory is making
predictions about and not another distribution as the one the Universum set is sampled
from as in the case of Vapnik. Furthermore Popper is referring to the potential possi-
bility of the theory to contradict actual observations and not the actual contradiction on
observations as given by a Universum set.
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ceivable, following [103], the Support Vector Machine [5] is chosen to
serve as a model of a learning algorithm. In section 2.4 certain prop-
erties of the described algorithms and relations to already existing al-
gorithms are discussed in order to improve the understanding of the
algorithm and its effects on data shown in chapter 3.

2.2.1 Support Vector Machine Implementations of the
Universum

The general Support Vector Machine is a supervised learning algo- Support Vector
Machines are
optimisation
problems over a
squared norm
regulariser and
a sum of inde-
pendent loss
terms

rithm for classification [5] and regression [22]. In the following, only
the classification version is considered. Given a set of labelled data
L = {(xi, yi)}i=1,...,m the SVM can be stated as a minimisation problem
consisting of a regularisation and an empirical loss term in the style of
the Frequentist learning problems shown in 1.5.1:

minimiseh∈H ||h||2H + C

m∑
i=1

`(h(xi), yi), (2.5)

where H is a Hilbert space of functions and ` is a loss function. There
are different versions of SVMs, depending on the loss function `. Two
versions will be derived for the binary case when yi ∈ R = {−1,+1}. For
binary classification the hypothesis h∗ minimising (2.5) is thresholded
to get the actual prediction function ĥ(x) = sgn(h∗(x)).

If H is the space of all linear or affine functions on Rn, H is just Rn

itself (see e.g. [59] for self duality of Hilbert spaces) since any element
w ∈ Rn corresponds to a linear function on Rn by fixing one argument
of the canonical dot product of Rn to w, i.e. Hlinear = {〈w, ·〉|w ∈ Rn}.
Adding a constant b ∈ R to each function yields the space of all affine Using the kernel

trick: Derive all
SVMs for Rn in
terms of dot prod-
ucts and change
the Hilbert space
afterwards by
replacing all
dot products by
kernels

functions on Rn: Haffine = Hlinear⊕R = {〈w, ·〉+b|w ∈ Rn, b ∈ R}. This is
valid for all Hilbert spaces. The spaceH∗ of linear functions on a Hilbert
space H, called dual space, is just the Hilbert space itself, independent
of the specific choice of H. Hence, the strategy will be to derive all
Support Vector Machines for Rn and replace all dot products by an
arbitrary kernel in the end. This strategy yields an SVM formulation
for any RKHS. Another advantage of formulating the SVM in its linear
form is the geometrical interpretation of maximising the distance or
margin of a separating hyperplane h = 〈w, ·〉 + b to the closest example
of the training set. Although this interpretation generalises to arbitrary
Hilbert spaces, it is less intuitive in the latter case.

2.2.1.1 Hinge Loss Universum

Given a set of labelled examples L = {(xi, yi)}i=1,...,m, the objective of an Naïve hard mar-
gin SVMSVM is to find a hyperplane h(x) = 〈w,x〉 + b that classifies all train-

ing examples correctly and has maximal margin. Since the prediction
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function will be the sign of the function output h(x), the goal is to put
all positive example on the side of the hyperplane the normal vector
w points to, and all negative example on the other side, while keeping
the closest examples in L as far apart from the hyperplane as possible.
Since the distance of a point x to a hyperplane Ew := {x′|〈w,x′〉+ b = 0}
is given by d(x, Ew) = 1

||w|| (〈w,x〉+b), a simple SVM can be stated as the
following constrained optimisation problem:

maximisew,b γ

s.t.
yi

||w||
(〈w,xi〉+ b) ≥ γ for all 1 ≤ i ≤ m

γ ≥ 0.

All training examples are correctly classified if and only if yi

||w|| (〈w,xi〉+
b) ≥ 0 for all xi. Thus, the above formulation does not allow any mis-
classification of the training examples. This kind of formulation is also
called hard margin SVM since the distance of the examples to the hy-
perplane cannot be smaller than the margin. A drawback of this formu-
lation is the norm in the denominator of the constraints which makes
the constraint difficult to handle. Fortunately, a simple observation
allows to rephrase the problem into a simpler version: If the goal is
to maximise yi

||w|| (〈w,xi〉 + b), then γ can equivalently be set to some
fixed value, e.g. γ = 1, and ||w|| can be minimised instead. By re-
placing ||w|| =

√
〈w,w〉 by 1

2 ||w||
2 it is possible to get rid of the square

root while not fundamentally changing the optimisation problem. This
removes all problematic parts and yields the following formulation: Hard margin SVM

minimisew,b
1
2
||w||2

s.t. yi(〈w,xi〉+ b) ≥ 1 for all 1 ≤ i ≤ m.

This version also uncovers the regulariser ||w||2. There is only one
step left to arrive at the final SVM formulation. In the current form,
all training examples are forced to be classified correctly. This is like
penalising misclassifications with infinite loss. Due to noise, an exact
separation is clearly not possible in most practical problems. Therefore,
all constraints are relaxed by introducing slack variables ξi ≥ 0, one
for each training example, that allow for violations of the margin but
are minimised at the same time, leading to the following optimisation
problem: Soft margin SVM

minimisew,b
1
2
||w||2 + C

m∑
i=1

ξi

s.t. yi(〈w,xi〉+ b) ≥ 1− ξi for all 1 ≤ i ≤ m

ξi ≥ 0.
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Figure 2.1: Left: Hinge loss with regularisation constant C · Ha(yh(x)) =

C · max(0, a − yh(x)) for different offsets a and values of C. Right: Universum loss

Ua(h(x)) = Ha(h(x)) + Ha(−h(x)) composed of two hinge losses. The value of the offset

a = −ε = −0.1 is depicted by the vertical dotted line.

Here, C is a constant chosen a priori to specify the cost of each margin SVMs minimise
the hinge loss on
margin violations

violation. The term C
∑m

i=1 ξi and the constraints implicitly define a loss
function called hinge loss: Ha(t) = max(0, a − t) with a = 1. The hinge
loss is depicted in figure 2.1. It penalises the amount ξi by which a
training example xi violates the margin, i.e. the amount yi(〈w,xi〉 + b)
is smaller than one. The violation is exactly the value of ξi. By plugging
the margin violation ξ directly into H1, the SVM problem can be stated
without constraints. This notation will be used further for the sake of
lucidity. Using hw,b(x) := 〈w,x〉+ b the SVM problem can be compactly
formulated as:

minimisew,b
1
2
||w||2 + C

m∑
i=1

H1(yihw,b(xi)) (2.6)

A convenient property of the SVM formulation (2.6) is its convexity.
Since a (squared) norm is always convex, the hinge loss is a convex
function, and convex functions are closed under addition (see [8]). This
implies that the optimisation problem (2.6) always has a unique global
minimum.

Now, how does the set of Universum points U enter the algorithm? Maximising the
number of contra-
dictions is relaxed
into bringing
the separating
hyperplane close
to the Universum
points.

As already noted in 2.1.2 a quantity like the number of contradictions
is hard to optimise. Therefore [103] propose to approximate the original
idea as formulated by Vapnik [100, 98] by forcing the hyperplane to be
close to the Universum points z1, ..., zq ∈ U, i.e. to enforce h to have
small absolute values on the Universum points.

This relaxation is motivated by two intuitions about the original Uni-
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versum idea. Firstly, the number of contradictions should be max-
imised. If the Universum points zj can be put close to the separating
hyperplane, small variations in the orientation of w will probably let
some of the zj change the side of the hyperplane and therefore induce
a change of sign of h(zj). However, the classification of the training
points is likely to remain unchanged, since their distance to the hy-
perplane was maximised. Therefore, there are functions that realise
the same labelling on the training points but different labels on the
Universum points. Since all zj that change the side of the hyperplane
count as contradiction, choosing a hyperplane which is close to the
Universum points can be seen as a heuristic for maximising the num-
ber of contradictions. Secondly, the idea behind using a Universum
is that the learning algorithm should not make a statement about the
points in U. But if the strength of the statement about a data point
is measured by the distance to the hyperplane, the area around the
hyperplane is exactly the place where the resulting hyperplane does
not make a strong statement since points that are far away from the
hyperplane are also deep inside one of the half-spaces associated with
one of the two classes, therefore making a strong statement about the
label.

It is important to note that this approximation does not use a set
of unlabelled test points as in the original idea. The approximation
simply consists of finding a separating hyperplane which is close to
the points in the Universum set U at the same time. Therefore, the
Universum algorithm as proposed by [103] is an inductive rather than
a transductive algorithm.

Bringing the hyperplane close to the Universum points can easily be −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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The ε-insensitive
loss is used for
the Universum
points

implemented into an SVM by adding another loss term CU

∑q
j=1 Ua(h(zj))

to (2.6). Ua(h(z)) is a loss function that is zero within a tube around the
hyperplane and increases linearly outside of that tube. Analogously
to that of the hinge loss, the slope of the loss is controlled by a reg-
ularisation constant CU. In support vector regression, the loss Ua is
known as ε-insensitive loss [22, 89], since the loss is insensitive to small
variations inside a tube of width 2ε around the hyperplane. The right
graphic in figure 2.1 shows the ε-insensitive loss. It also reveals that
the ε-insensitive loss can be expressed as the sum of two hinge losses
with one of them being reflected on the y-axis:

Ua(h(z)) = Ha(h(z)) + Ha(−h(z)). (2.7)

After adding the loss term for the Universum points, the SVM formula-
tion (2.6) turns into

minimisew,b
1
2
||w||2 + C

m∑
i=1

H1(yihw,b(xi)) + C

q∑
j=1

Ua(hw,b(zj)).(2.8)

Before deriving the final optimisation problem that is amenable for the The ε-insensitive
loss can be sim-
ulated by adding
the Universum
points twice with
opposite labels
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use of kernels, it is useful to point out another observation that will
facilitate the derivation of the problem. When looking at equation (2.7),
one can make the simple transformation

Ua(h(z)) = Ha(h(z)) + Ha(−h(z)

=
∑

y∈{+1,−1}

Ha(y · h(z)).

This means that penalising h(z) with the ε-insensitive loss is equivalent
to adding z twice to the training set, each time with opposite labels. The
only difference to the labelled points {(xi, yi)}i=1,...,m is that the hinge
loss is shifted by a = −ε for a tube of width 2ε instead of a = 1 for the
normal labelled examples (see figure 2.1). In the following, y

(u)
j denote

the fake labels of a Universum point and y
(l)
i the real labels from the

training set.
Rephrasing equation (2.8) with constraints in terms of slack vari-

ables ξi, ϑj yields the following optimisation problem:

minimisew,b
1
2
||w||2 + C

m∑
i=1

ξi + CU

q∑
j=1

ϑj

s.t. y
(l)
i (〈w,xi〉+ b) ≥ 1− ξi for all 1 ≤ i ≤ m

|(〈w, zj〉+ b)| ≤ ε + ϑj for all 1 ≤ j ≤ q

ξi ≥ 0 for all 1 ≤ i ≤ m

ϑj ≥ 0 for all 1 ≤ j ≤ q.

Replacing each zj by two samples (zj ,+1) and (zj ,−1) and expanding
the constraints |(〈w, zj〉 + b)| ≤ ε + ϑj into two constraints for each zj,
the optimisation problem can equivalently be stated as:

minimisew,b
1
2
||w||2 + C

m∑
i=1

ξi + CU

2q∑
j=1

ϑj (2.9)

s.t. y
(l)
i (〈w,xi〉+ b) ≥ 1− ξi for all 1 ≤ i ≤ m

(〈w, zj〉+ b) ≥ −ε− ϑj for all 1 ≤ j ≤ q

−(〈w, zj〉+ b) ≥ −ε− ϑj for all q + 1 ≤ j ≤ 2q

ξi ≥ 0 for all 1 ≤ i ≤ m

ϑj ≥ 0 for all 1 ≤ j ≤ 2q.

This optimisation problem can be solved using Lagrange multipli-
ers (see [8] for an introduction on optimisation). The corresponding
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Lagrangian is

g(λ,υ, λ̃, υ̃,w, b, ξ,ϑ) =
1
2
||w||2 + C

m∑
i=1

ξi + CU

u∑
j=1

ϑj (2.10)

−
m∑

i=1

λi[y
(l)
i (〈w,xi〉+ b)− 1 + ξi]

−
2q∑

j=1

υj [y
(u)
j (〈w, zj〉+ b) + ε + ϑj ]

−
m∑

i=1

λ̃iξi −
2q∑

j=1

υ̃jϑj

with y
(u)
j = 1 for all 1 ≤ j ≤ q and y

(u)
j = −1 for all q+1 ≤ j ≤ 2q. Equation The constrained

optimisation
problem is solved
using Lagrange
multipliers

(2.10) has to be minimised with respect to the so called primal variables
w, b and maximised with respect to the Lagrange multipliers λ, λ̃,υ, υ̃,
also termed dual variables. Alternatively, just as in the derivation of
standard SVMs [9, 81], it is possible to derive conditions for the optimal
primal variables and plug them back into the Lagrangian. Since the
problem is convex, the optimal values for w and b can be specified
uniquely. After substituting the optimal values for w and b the only
variables left are the dual variables. This step is important for replacing
the standard dot products by kernels later. The partial derivatives with
respect to the primal variables yield their optimality conditions [66]:

∂g

∂w
= w −

mX
i=1

y
(l)
i λixi −

2uX
j=1

y
(u)
j υjzj ⇒ w =

mX
i=1

y
(l)
i λixi +

2uX
j=1

y
(u)
j υjzj (2.11)

∂g

∂b
= −

mX
i=1

y
(l)
i λi −

2uX
j=1

y
(u)
j υj ⇒

mX
i=1

y
(l)
i λi +

2uX
j=1

y
(u)
j υj = 0 (2.12)

∂g

∂ξi
= C − λi − λ̃i ⇒ C − λi − λ̃i = 0 (2.13)

∂g

∂ϑj
= CU − υj − υ̃j ⇒ CU − υj − υ̃j = 0. (2.14)

Condition (2.11) shows that w is a linear combination of training and The dual formula-
tion uses only dot
products on the
training and Uni-
versum examples

Universum points. This will be useful when recovering the learnt func-
tion from the dual formulation derived next. Resubstituting the value
for w back into the Langrangian (2.10), setting x̃i := xi for 1 ≤ i ≤ m,
x̃j+m := zj for 1 ≤ j ≤ 2q, α =

(
λ
υ

)
, % =

(
1
−ε

)
, y =

(
y(l)

y(u)

)
, and using the
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linearity of the dot product yields the dual formulation

g(α) =
m+2q∑
i=1

%iαi −
1
2

m+2q∑
i,j=1

yiyjαiαj〈x̃i, x̃j〉 (2.15)

s.t.
m+2q∑
i=1

yiαi = 0

0 ≤ αi ≤ C for all 1 ≤ i ≤ m

0 ≤ αi ≤ CU for all m + 1 ≤ i ≤ m + 2q.

In the dual formulation (2.15), the optimality conditions (2.13) and The soft margin is
expressed as box
constraints on the
Lagrange multipli-
ers

(2.14) are enforced by bounding each λi and each υj by zero from below
and by C or CU from above, respectively. The value of the Lagrange
multipliers λ̃i and υ̃j are implied by the values of C, CU and α. The
condition (2.12) was not resubstituted into (2.10) and is therefore not
enforced by default. This is why it is added as a constraint to (2.15).
Since (2.15) is merely a function of the Langrange multipliers α, only
the maximisation part is left. Once the maximising α∗ are found, the
resulting function is simply

h(x) = 〈w,x〉+ b (2.16)

= 〈
m+2q∑
i=1

α∗i yix̃i,x〉+ b

=
m+2q∑
i=1

α∗i yi〈x̃i,x〉+ b,

where the offset b can be obtained from the fact that all Langrange The learnt func-
tion is a sum over
kernel functions

multipliers α∗ that are strictly between zero and C or CU, respectively,
belong to so called active constraints, i.e. (〈w,xi〉 + b) = 1 or (〈w, zj〉 +
b) = −ε for all 1 ≤ i ≤ m with 0 < α∗i < C or all m + 1 ≤ j ≤ m + 2q
with 0 < α∗j < CU. This hinge loss formulation of an SVM using the
Universum will be called U-SVM from now on.

The important property of the dual formulation (2.15) and the re-
sulting function (2.16) is that the data points enter it exclusively in dot When merging

the labels into
the Lagrange
multipliers, the
U-SVM can be
compactly written
as a quadratic
optimisation
problem

products 〈·, ·〉. As already mentioned in the beginning, this dot product
can now be replaced by an arbitrary kernel function k : D × D → R
representing the dot product in the RKHS associated with it. In this
case, the elements of the training set L and the Universum set U do
not even need to be elements in a space since the space structure is
imposed by the employed kernel k. When denoting the Gram matrix of
k with (K)ij = k(x̃i, x̃j) for 1 ≤ i, j ≤ m+2q and merging the labels yi and
the Lagrange multipliers αi into one variable βi, the U-SVM formulation
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can be written compactly in matrix notation as

maximise %>β − 1
2
β>Kβ

s.t. y>β = 0
0 ≤ yiβi ≤ C for all 1 ≤ i ≤ m

0 ≤ yiβi ≤ CU for all m < i ≤ m + 2q.

An important property of the SVM and U-SVM as described above is Examples with
nonzero α deter-
mine the solution
and are called
Support Vectors

the sparseness of its solution. Equation (2.16) reveals that only those
elements x̃i contribute to h that have nonzero αi. These points are
called support vectors. Usually only a part of the training and Univer-
sum set eventually become support vectors. This sparseness is favor-
able since it speeds up the computation for the resulting function, be-
cause only the kernels between the support vectors and the test points
have to be computed.

The sparseness property can be seen by looking at the hinge loss
functions in figure 2.1. During the optimisation of the (U)-SVM the
gradient of the loss is zero for all vectors x̃i for which the function value
lies in a flat region of the loss function, i.e. which have h(x) > 1. That
means that the only gradient information for the optimiser comes from
the regulariser ||w||2 = β>Kβ. But since the optimiser is minimising
||w||2, the best thing it can do is to shrink the αi corresponding to x̃i to
zero. Thus, all elements x̃i that lie in a region with constant loss will
not contribute to the solution, i.e. not become support vectors.

To conclude the section about the hinge loss formulation2, a few The U-SVM can be
efficiently solved
with almost all
SVM optimizers.

comments about the actual implementation are necessary. A nice fea-
ture of the U-SVM algorithm is its similarity to the formulation of a
standard SVM. The only differences are the linear part %>β of the ob-
jective function and different regularisation constants C and CU. Each
SVM optimiser that allows to change these parts of the SVM formula-
tion is also capable of solving the U-SVM. Doubling the amount of Uni-
versum points by introducing them twice with different labels might
seem inefficient, but the kernel matrix only needs to be computed for
the original Universum set U and the training set L. It is then easy to
write a wrapper function that mimics the kernel matrix for the dou-
ble part of the Universum points by referring to the already computed
kernel values. Nevertheless, the number of variables to optimise re-
mains doubled. This might slow down the learning process for large
Universum sets U.

2Implementations in C (the UniverSVM) and Matlab can be downloaded from my web-
site http://www.tuebingen.mpg.de/~fabee.
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Figure 2.2: Quadratic loss functions Qa(t) = (t− a)2: The two displayed functions are

Q0 and Q1 .

2.2.1.2 Least Squares Universum

A variation of the U-SVM can be obtained by replacing the hinge loss by
the quadratic loss. This version will be needed in section 2.4.2 to show
the connection between this learning machine and certain types of fea-
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Uls-SVM is a
U-SVM with
the hinge loss
replaced by the
quadratic loss

is usually called least squares SVM (LS-SVM) and was introduced by
[97, 96]. For the sake of short notation the least squares U-SVM will be
referred to as Uls-SVM in the following. The main difference between
the least squares SVM and a normal SVM is that the least squares SVM
requires 〈w,x〉+b = 1 instead of 〈w,x〉+b ≥ 1 . This means that the least
squares SVM penalises every deviation from the margin, no matter in
which direction. In contrast, the hinge loss only penalises deviations
into the margin. As before, the points in U will be required to lie on
the hyperplane. The three loss functions are depicted in figure 2.2.
Since the quadratic loss is convex, too, the Uls-SVM is again a convex
optimisation problem.

In the following, analogous steps as in section 2.2.1.1 are taken to The Uls-SVM
can be derived
analogously
to the U-SVM:
Constrained opti-
misation problem,
Lagrange multi-
pliers, optimality
conditions, dual
formulation

derive the finale version of the Uls-SVM. Starting from a general formu-
lation in terms of a loss function and a regulariser, slack variables are
introduced and a Lagrangian is formulated. Optimality conditions for
the primal variables of the Lagrangian are derived. Their substitution
into the Lagrangian gives the final dual formulation.

Using quadratic loss functions Qa(t) = (t − a)2, the general optimi-
sation problem for the Uls-SVM can be stated as

minimisew,b
1
2 ||w||

2 + C
2

∑m
i=1 Q

y
(l)
i

(hw,b(xi)) + CU

2

∑q
j=1 Q0(hw,b(zj)).(2.17)
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Here, quadratic loss is put on hw,b(xi) instead of yihw,b(xi) as in the
hinge loss formulation (2.8). So, instead of requiring yihw,b(xi) = 1,
it is required that hw,b(xi) = yi. This is just a minor technical differ-
ence, though. One could also derive the Uls-SVM with the constraint
yihw,b(xi) = 1. Unlike before, the Universum points are not added twice
to the problem. Since the quadratic loss does not have an area of zero
loss around zero, it is more appropriate to enforce the target value
y(u) = 0 for all Universum points {zj}j=1,...,q. As before, the loss func-
tions are expressed in terms of slack variables

minimisew,b ||w||2 +
C

2

m∑
i=1

ξ2
i +

CU

2

q∑
j=1

ϑ2
j (2.18)

s.t. 〈w,xi〉+ b = y
(l)
i − ξi

〈w, zj〉+ b = 0− ϑj .

This yields the Lagrangian

g(w, b, λ, υ) =
1

2
||w||2 +

C

2

mX
i=1

ξ2
i +

CU

2

qX
j=1

ϑ2
j (2.19)

−
mX

i=1

λi(〈w,xi〉+ b− y
(l)
i + ξi)−

qX
j=1

υj(〈w, zj〉+ b + ϑj).

Calculating the derivatives of g with respect to the primal variables
and setting them to zero yields the following optimality conditions

∂

∂w
g = w −

m∑
i=1

λixi −
q∑

j=1

υjzj ⇒ w =
m∑

i=1

λixi +
q∑

j=1

υjzj

∂

∂b
g = −

m∑
i=1

λi −
q∑

j=1

υj ⇒
m∑

i=1

λi +
q∑

j=1

υj = 0

∂

∂ξi
g = Cξi − λi ⇒ λi = Cξi

∂

∂ϑj
g = CUϑj − υj ⇒ υj = CUϑj .

Substituting these values into (2.19), setting α =
(

λ
υ

)
as before, re-

placing the dot products by kernel functions and defining C =
(

1
C I 0
0 1

CU
I

)
,

where I denotes the identity matrix of appropriate dimension (m×m or
q × q, respectively) and 0 a matrix with only zeros, yields the dual for-
mulation in matrix notation

maximiseα

(
y(l)

0

)>
α− 1

2
α>Kα− 1

2
αCα

s.t. 1>α = 0.
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This is still a convex problem in α. To get the optimality conditions
for α, the derivative with respect to α is set to zero. This yields the
condition

Kα + Cα =
(

y(l)

0

)
s.t. 1>α = 0.

Apart from the additional constraint, the Uls-SVM is quite similar to the The Uls-SVM can
be written as a
set of linear equa-
tions

well known Ridge Regression learning algorithm (see e.g. [85, 65]). The
linear equality constraint can easily be included as an additional linear
equation, which leads to the final problem

(
0 1>

1 K + C

)(
b
α

)
=

 0
y(l)

0

 .

The optimal values α∗ and b∗ are therefore given by The Uls-SVM can
be solved by a
simple matrix in-
version

(
b∗

α∗

)
=

(
0 1>

1 K + C

)−1
 0

y(l)

0

 . (2.20)

As easily seen from (2.20), solving a Uls-SVM involves just a simple
matrix inversion instead of optimising a quadratic function as for the
U-SVM. This makes the programming part easy, but is not quite appli-
cable when having a lot of labelled and Universum examples since a
matrix inversion is in O(d3) if d is the dimension of the matrix. When
dealing with large kernel matrices, other optimisation methods such
as gradient descent [8] or conjugate gradient [39, 86] must be used for
minimising the quadratic error∥∥∥∥∥∥

(
0 1>

1 K + C

)(
b
α

)
−

 0
y(l)

0

∥∥∥∥∥∥ .

2

Another drawback of the least squares SVM and the Uls-SVM is that Uls-SVM solutions
are not sparseit does not yield a sparse solution, which slows down the evaluation of

the resulting function. As mentioned in 2.2.1.1, sparseness is due to
constant parts in the loss function. Since the quadratic loss is constant
nowhere, there is no a priori reason why the α should become zero.

2.2.1.3 Multiclass Universum
A multiclass prob-
lem can be cast
into a set of bi-
nary problems in
several ways

The most widely used method to deal with more than two classes, i.e.
∞ > |R| > 2, is to employ several binary classifiers and use their out-
puts to predict the label. In general, there are many possibilities to use
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more than one binary classifier for multiclass classification. The most
common scheme is the so called One vs. Rest multiclass classification
scheme, where a single binary classifier is trained for each possible
value y ∈ R by assigning all data points with yi = y a positive label
and all others a negative one. When predicting the label of a new data
point, the label corresponding to the binary classifier with the largest
output value h(x) is returned.

Clearly, dozens of schemes can be thought of how to combine bi- Multiclass as a
decoding prob-
lem: Outputs of
binary classifiers
serve as bits of
codewords for the
different classes

nary classifiers to a multiclass classifier. In this thesis, the decoding
approach of [1] is used. The authors view the multiclass problem as
a decoding problem over a ternary alphabet A = {−1, 0, 1}, where each
binary classifier constitutes one ”bit” of the code word. The value 0
serves as a don’t care term, meaning that the output of this classifier is
not important for predicting the current class and is therefore ignored.
For each multiclass scheme there is a corresponding coding matrix M.
Each row of M corresponds to one element in R, and each column cor-
responds to a single binary classifier. Mij contains the expected output
in the jth binary classification problem for the ith element of R. For
the sake of simplicity R is assumed to be R = {1, ..., l} from now on,
where l is the cardinality of R. To give an example: The coding matrix
M for l = 4 and One vs. Rest scheme would be

M1vsR =


1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

 .

Another frequently used multiclass classification scheme is the so called
one-versus-one strategy. In One vs. One, a single classifier is trained
for each pair of different values in R, i.e. M ∈ {−1, 0, 1}l× 1

2 (l−1)l. For the
example above M would be

M1vs1 =


1 1 1 0 0 0
−1 0 0 1 1 0
0 −1 0 −1 0 1
0 0 −1 0 −1 −1

 .

Once the single binary classifiers are trained, the predictions of the Decoding: Taking
the closest code-
word according to
some measure

single classifiers h1, ..., hn on a new point x yield a codeword

h = (h1(x), ..., hn(x))

when taking the real valued outputs or

ĥ = (sgn(h1(x)), ..., sgn(hn(x)))

when thresholding them. The label of x is obtained by finding the row
Mi: of M that is ”closest” to h or ĥ according to some error measure.
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Closeness is usually measured by a distance function d. The predicted
label is then ŷ = argminid(Mi:, ĥ) or y = argminid(Mi:,h), respectively.
The authors of [1] propose several distance functions. Two of them will
be used in later chapters. The first and easiest one is the Hamming Hamming Decod-

ingdistance

dH(Mi:, ĥ) =
n∑

j=1

(
1− ĥjMij

2

)
. (2.21)

If either Mij or ĥj equals zero, the respective component contributes Loss based de-
codingthe constant value 1

2 to the sum. The second distance function pro-
posed by [1] is based on the loss function `j that is used by the single
classifiers:

d′L(Mi:,h) =
n∑

j=1

`j(Mij · hj)

While in principle it is possible to use a completely independent Uni- One-Rest strategy
is not useful for
multiclass Univer-
sum

versum set for each of the binary classifiers, it is more interesting to
use all examples that are assigned labels Mij = 0 in a single binary
classification task for the multiclass strategy. In this case the One vs.
Rest strategy is useless, since it always uses all labelled examples for
training a single classifier. The One vs. One strategy, however, is appli-
cable since only examples of two classes get assigned a nonzero label
in a single subtask. All other examples that are normally ignored for
this subtask can now be used as Universum points. In this case, it
is advisable to adapt the loss based distance function to a more gen-
eral version that also takes into account the predictions on Universum
points

dL(Mi:,h) =
n∑

j=1

`j(Mij ,hj), (2.22)

i.e. the output hj increases the distance if it deviates from its target
value zero. In the distance function d′L used in [1], the output hj was
not taken into account if Mij = 0 since they used the loss function on
the product of both values which was then automatically set to zero.
Another distance function that will be used later and that falls into the L1 decoding
loss based framework, is the L1-norm

dL1(Mi:,h) = ||Mi: − h||1 (2.23)

=
n∑

j=1

|Mij − hj |.

This approach is theoretically less justified but works well in practice,
as experimental evidence suggests in chapter 3.
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2.2.2 Related work

Although [103] are the to give an algorithm that explicitly refers to the
Universum idea by Vapnik [100, 98], there are some related approaches
that shall be mentioned here briefly.

[107] invented an algorithm for the One vs. One strategy in mul- Forcing unused
examples to zero
in multiclass

ticlass learning that exactly does what has been described at the end
of the previous section. Although their algorithm is basically equiva-
lent to the U-SVM formulation above, their motivation is different. The
motivation for employing the examples with Mij = 0 is to get better pre-
dictions in the multiclass setting by sharpening the contrast between
the different binary classifiers. In particular, they do not consider using
a Universum for binary classification.

Additionally, there are two Bayesian algorithms that refer to non- Non-examples
in Bayesian
interpretations for
SVMs

examples or neither class in the binary classification setting. [90, 91]
gives a probabilistic interpretation for a standard hinge loss SVM by
establishing the connection between the MAP estimate of a Gaussian
process with a Gaussian prior using a covariance function k and a
hinge loss based noise model similar to that described in equation (1.4)
in section 1.5.1. The problem the author is faced with is that the like-
lihood that uses a heuristic normalisation term does not integrate to
one. Therefore, a third - the neither - class is introduced that holds
the remaining probability mass by definition. However, since he never
assigns any example to this class, the relation of this approach to the
Universum is rather an artifact of the need to store left over probability
mass.

A very similar idea can be found in [55]. They introduce a third Zero-class model
to attack the
independence of
the input distribu-
tion PX from the
latent function
in Bayesian
semi-supervised
learning

class to deal with the problem that unlabelled examples used in semi-
supervised learning do only contribute to generative models PX|Y(xi|yi)
but not to discriminative models PY|X(yi|xi) which are closer to Fre-
quentist approaches for classification. As already mentioned in 1.5.2,
this effect is due to the fact that the parameters of a distribution for the
labels are independent of the value of the corresponding input point if
the label is not observed and its value has to be marginalised out. To
circumvent this problem, the authors of [55] introduce an additional -
neither - class to introduce a stochastic dependence between the pa-
rameter and the unobserved label in the discriminative model. How-
ever, as in [90, 91], examples of this class are never used. Therefore
the relation of this approach to the Universum is born from the need
to introduce a stochastic dependence between labels and parameters
in semi-supervised learning, rather than implementing the Universum
idea as a set of actually observed non-examples.
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2.3 Contradictions and Margin

One intuition that led to the U-SVM as proposed by [103] was that
Universum points that lie close to the hyperplane give rise to contra-
dictions when the normal w of the hyperplane is perturbed. Clearly, a
hyperplane that separates the training examples with margin γ can be
tilted to all directions by a certain angle without changing the labelling
of the training examples. This section gives an analysis of the number
of contradictions in terms of the margin γ and the minimal radius R of
the ball that contains all data points. This leads to the formulation of
another Universum algorithm that puts less emphasis on Universum
examples that are far away from the labelled training points.

If not explicitly mentioned, the offset b is assumed to be zero through-
out the whole section. Furthermore, it is assumed that the data can
be separated with a nonzero margin γ and that all normals w of hy-
perplanes have length one. As already mentioned in section 2.2.1.1,
minimising the norm while keeping the margin fixed to one is equiva-
lent to maximising the margin γ while keeping the norm of w fixed to
one.

Let R be the minimal radius of a ball around the origin that contains Intuition: When
separating the
data with margin
γ, the hyperplane
w has an area
on the sphere in
which it can move
without changing
the labelling
of the training
examples.

all training points L = {(xi, yi)}i=1,...,m . Since ||w|| = 1, all normals w
live on the sphere S ⊂ H. In particular, the normal of the hyperplane
that separates the training data with maximal margin is represented
by a point on S. This situation leads to the following idea (depicted
in figure 2.3), which is subsumed on the lemma below: If w separates
the training data with margin γ, then w can be moved on the sphere
S within a radius r without changing the labelling of the training data.
Since there is no training point inside the margin, w can be moved
along S at least until the plane Ew = {x ∈ H|〈w,x〉 = 0} hits the intersec-
tion of the original margin with the ball of radius R. For all movements
that are so small that the hyperplane does not cross this intersection,
one can be sure that the labelling of the training data is unchanged.
Therefore, the margin γ determines the minimal radius r of a ball on
S within which w can be moved. On the other hand, the number q′ of
Universum points inside the 2ε-area around decision boundary gives a
hint how many points the hyperplance can traverse when moving its
normal inside the allowed area on the sphere. As soon as a Univer-
sum point is traversed, it counts as a contradiction. Therefore, the
number of contradictions can be bounded from below by a function of
the margin γ, the radius R and the width 2ε of the tube containing the
Universum points.

LEMMA: Let S be the sphere in H, i.e. S := {h ∈ H| ||h|| = 〈h, h〉 = 1}
and let L = {(xi, yi)}i=1,...,m and U = {zj}j=1,...,q be the set of labelled
and the set of Universum examples. Furthermore, let {kxi}i=1,...,m and
{kzj}j=1,...,q denote the training and Universum examples in the RKHS.
Let Vγ,ε ⊂ S be the subset of S that separates L with a margin of at least
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Figure 2.3: Relation between margin and number of contradictions: The green and

red crosses represent training data points separated by a maximum margin hyperplane.

The ball depicts the sphere S of all possible hyperplane normals w with length one.

The maximum enclosing ball with radius R and the hyperplane itself are not shown.

The margin is depicted by the gray planes. All points marked by circles and triangles

are Universum points. The Universum points marked by blue triangles can become

contradictions by tilting the hyperplane. The cone depicts the maximum tilt angle that is

possible without changing the labelling of the training points.



CHAPTER 2. THE UNIVERSUM ALGORITHM 54

γ and that contains all Universum examples within a tube of at most
2ε:

Vγ,ε := {w ∈ S| max
z∈U

|〈w, kz〉| ≤ ε and min
1≤i≤m

|〈w, kxi〉| ≥ γ}

Let R ∈ R be the radius of the smallest ball around the origin that
contains all elements of L. If Vγ,ε 6= ∅, then there exists a subset Vγ′,ε ⊂ S
with γ′ ≤ γ such that Vγ′,ε has at least

c ≥

∣∣∣∣∣
{

z ∈ U| ||kz|| ≥
εR2

γ
√

R2 − γ′2 − γ′
√

R2 − γ2

}∣∣∣∣∣
≥

∣∣∣∣∣
{

z ∈ U| ||kz|| ≥
εR2√

R2 − γ′2(γ − γ′)

}∣∣∣∣∣
contradictions.

PROOF: Figure 2.4 schematically depicts the configuration of the
proof’s elements. Since all elements of U are inside a 2ε tube around
each element of Vγ,ε, w ∈ Vγ,ε has to be tilted around the origin by an
angle of at least |ω| = | arcsin 〈w,kz〉

||kz|| | ≤ | arcsin ε
||kz|| | in order to produce a

contradiction on z ∈ U is , with equality if and only if kz lies directly on
the tube, i.e. |〈w, kz〉| = ε. When tilting w around an axis v by ω with3

v⊥w and v⊥kz, kz lies directly on the hyperplane, i.e. 〈w, kz〉 = 0. Moving w on the
sphere means
tilting the hyper-
plane Ew. If
the hyperplane
moves over the
Universum ele-
ment kz without
changing the
classification of
L by w, then
kz counts as a
contradiction.

To make sure that the elements of L are still separated by some
margin γ′ ≥ 0, certainly not every angle ω is feasible. But since it
is known that all elements of L lie inside a ball with radius R and
are separated by a margin of γ, one can derive an upper bound for ω
such that tilting w by ω results in a hyperplane that still separates the
elements of L by a margin of at least γ′. It is now shown that the class
Vγ′,ε contains hyperplanes for generating a number of contradictions
on U that depends on the number of examples z having a norm larger
than a certain constant.

The maximal tilt angle of the original hyperplane is upper bounded
by |ω| ≤ arcsin γ

R [81, 101]. When tilting by arcsin γ
R , the new tilted

hyperplane w′ intersects the ball of radius R at the intersection of the
margin of w and the subspace span{w,w′}. The margin of w′ becomes
γ′ = 0 in this case. Therefore, the following upper bound can be stated:

0 ≤ |ω| ≤ arcsin
γ

R
≤ π

2
.

The last inequality follows from γ ≤ R . In the following, it is important
to keep in mind that for the interval 0 ≤ |ω| ≤ π

2 , sinω is a strictly
monotonic increasing function of ω. If a nonzero smaller margin γ′

should be maintained, |ω| is upper bounded by

|ω| ≤ arcsin
γ

R
− arcsin

γ′

R
.

3The sign of ω is determined by the orientation of (w, kz , v).
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γ γ’

2ε

R

w

ω

ω

Figure 2.4: Geometrical elements of the proof: The labelled dataset, depicted by the

green and red crosses, is separated by w with margin γ. All labelled examples are inside

a ball of radius R around the origin. At the same time all Universum examples, depicted

by the gray crosses, are located inside a tube of width 2ε around the hyperplane. When

tilting w about an angle ω the resulting hyperplane, depicted by the blue lines, only

separates the labelled examples with margin γ′. The further w is tilted, i.e. the larger the

angle ω, the smaller is the new margin γ′.
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All hyperplanes w′ that can be produced by tilting w by an angle |ω| ≤
arcsin γ

R − arcsin γ′

R are therefore an element of Vγ′,ε, and ,in particular,
w ∈ Vγ′,ε.

By strict monotonicity of sinω in −π
2 ≤ ω ≤ π

2 ,

sinω ≤ sin
(

arcsin
γ

R
− arcsin

γ′

R

)
= sin

(
− arcsin

γ′

R

)
cos
(
arcsin

γ

R

)
+ sin

(
arcsin

γ

R

)
cos
(
− arcsin

γ′

R

)
= −γ′

R

√
1− γ2

R2
+

γ

R

√
1− γ′2

R2

=
1

R2

(
γ
√

R2 − γ′2 − γ′
√

R2 − γ2
)

holds. Due to the considerations at the beginning of the proof, tilting
by an angle |ω| > arcsin ε

||kz|| in the appropriate direction and for the
appropriate sign of ω causes a contradiction on a Universum example
z. The upper bound on |ω| is chosen such that, no matter in which
direction w is tilted, w′ still separates the training examples with mar-
gin γ′. Therefore,the direction in which w is tilted does not matter. For Since all Uni-

versum points
lie in an ε-tube
around the hy-
perplane and
the maximal tilt
angle is known,
it depends on the
distance of z to
the origin in H
if z can become
a contradiction
when tilting the
plane with the
maximal angle.

each fixed 0 ≤ |ω| ≤ arcsin γ
R − arcsin γ′

R and for each element z ∈ U ful-
filling ||kz|| > ε

sin ω , there exists a hyperplane w′ (the tilted version of w)
that contradicts w on z. Thus, the number of contradictions c is lower
bounded by

c ≥
∣∣∣{z ∈ U| ||kz|| >

ε

sinω

}∣∣∣
≥

∣∣∣∣∣
{

z ∈ U| ||kz|| >
εR2

γ
√

R2 − γ′2 − γ′
√

R2 − γ2

}∣∣∣∣∣
≥

∣∣∣∣∣
{

z ∈ U| ||kz|| ≥
εR2√

R2 − γ′2(γ − γ′)

}∣∣∣∣∣
�

Clearly, c decreases with ε since less Universum examples fulfill the
requirement ||kz|| > ε

sin ω . Therefore, making ε as small as possible will
generate a small lower bound on ||kz|| and will allow for a larger number
of contradictions c.

One key insight of the proof of the above lemma is that if the ab-
solute value of the angle ω between a vector to a Universum point and
the hyperplane is smaller than |ω| ≤ arcsin ε

R , the equivalence class con-
tains at least two functions that form a contradiction on that Univer-
sum point. This implies that the larger the distance of the Universum
point to the origin, the larger is the allowed distance to the hyperplane.
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This motivates another Universum algorithm implementing the maxi-
mum number of contradictions idea by Vapnik. The new Universum
algorithm adapts ε of the ε-insensitive loss for each Universum point
depending on its ”distance to the origin”.

If the radius of the smallest ball around the origin containing the Algorithmic im-
plementation:
Increase the
width of the
ε-tube with the
distance to the
origin.

training data (not necessarily the Universum) and the maximal mar-
gin γ separating the two classes is known, then it is possible to tilt
the maximal margin hyperplane by a certain angle ω = arcsin γ

R without
changing the labelling of the training examples. Furthermore, every
Universum example z that strictly lies inside the complement of a cone
around w with its apex at 0 and an opening angle of ω can become a
contradiction by varying w by at most |ω|. In that sense, the loss func-
tion of the original Universum formulation is not quite correct since
the Universum examples should rather lie inside the complement of a
cone around w instead of a tube. Therefore, the ε of the ε-insensitive
loss function corresponding to maximising the number of contradic-
tions while correctly separating the data points should increase with
distance to the origin along the hyperplane. This leads to the following
constraint for the Universum examples:

|〈w, kz〉| 1
||w||

||kz||
≤ sinω =

γ

R
=

1
||w||

R

|〈w, kz〉| ≤ 1
R
||kz|| := λ||kz||

This is exactly the ε-insensitive loss with ε varying proportional to ||kz||.
When considering the set of affine hyperplanes, the apex of the cone Algorithmic imple-

mentation with
offset b leads to a
tricky constraint,
but the constraint
for b = 0 can
serve as a lower
bound.

is no longer at 0 but at the intersection of w and the hyperplane, i.e. at
the point δw with 〈w, δw〉+ b = 0 which is equivalent to δ = − b

||w||2 . The
angle ω = arcsin γ

R′ must now be computed with a different, a smaller
radius R′ that depends on the position of the cone’s apex. This leads to
a more difficult constraint∣∣∣∣∣ (〈w, kz〉+ b) 1

||w||

||kz − δw||

∣∣∣∣∣ ≤
1

||w||

R′ := ρ
1

||w||

|〈w, kz〉+ b| ≤ ρ||kz − δw||

|〈w, kz〉+ b| ≤ ρ||kz +
b

||w||2
w||,

where 1
R′ = ρ ∈ R and ρ > 0. This constraint is not easy to handle when

deriving the optimisation problem. Therefore, it has to be approximated
by lower bounding ||kz + b

||w||2 w|| with a simpler term, and use this term
for the formulation of the optimisation problem’s constraint. A lower



CHAPTER 2. THE UNIVERSUM ALGORITHM 58

bound can be obtained by the following calculation:

ρ||kz +
b

||w||2
w|| = ρ

(
||kz||2 +

b2

||w||2

) 1
2

≥ ρ
(
||kz||2

) 1
2 = ||kz||.

Since ||kz|| =
√

k(z, z) is a constant, one can use the same constraint
as if b = 0:

|〈w, kz〉+ b| ≤ ρ||kz||. (2.24)

ρ is a constant controlling the opening angle of the cone, i.e. ρ is in- The Cone-
Universum
Uc-SVM

versely proportional to the cone’s opening angle and is therefore pro-
portional to the opening angle of the cone’s complement. Instead of
calculating the value of ρ = 1

R′ , it can as well just be set to a fixed value
at the beginning of the optimisation.

The new Universum algorithm can now be obtained by replacing the
constraint |〈w, kzj 〉 + b| ≤ ε − ϑj (2.9) by |〈w, kzj 〉 + b| ≤ ρ||kz|| − ϑj. The
resulting SVM will be referred to as Uc-SVM or Cone-Universum.

2.4 Analysis of the Hinge and Least Squares
Universum Implementations

The next sections present an analysis of a few aspects of the Univer-
sum algorithm for SVMs. It turns out that the algorithm as proposed
by [103] is closely related to the restriction of the space of possible solu-
tions (see 2.4.1) and feature extraction algorithms like kernel principal
component analysis (kPCA) [80] and kernel fisher discriminant analysis
(kFDA) [61, 60] (see 2.4.2). The results of this section can help to ex-
plain the performance of the U-SVM as well as the Uls-SVM and give a
guideline how to choose a Universum for certain tasks at hand.

2.4.1 Hard Margin Universum and Subspace Projection

In this section it will be shown that a U-SVM with hard margin on U, U-SVM with
CU = ∞ and
b = 0 is equiva-
lent to projecting
out the subspace
spanned by the
Universum points
kz in H from the
span of training
examples, in
which the solu-
tion of the SVM
lives.

ε = 0 and no offset b, i.e. a U-SVM with CU = ∞ and b = 0, is equivalent
to training a normal SVM with a special kernel where the subspace
spanned by the kzi

with zi ∈ U is removed from the subspace spanned
by the kxi with xi ∈ {xj}j=1,...,m. Throughout this section, “hard margin
U-SVM” refers to a U-SVM with hard margin on U. The margin on the
labelled examples can be soft, i.e. C < ∞. This means that the result-
ing hyperplane in the RKHS is orthogonal to the space spanned by the
Universum points in the RKHS. In order to get an intuitive understand-
ing, the double role of elements x, x′ ∈ D as either a function on D or an
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argument to a function on D via the kernel k, has to remembered, i.e.

x : D → R
x′ 7→ kx(x′) = k(x, x′) = 〈kx, kx′〉.

The same is true for linear combinations of elements in the RKHS H.
Now, if all Universum points z1, ..., zq ∈ U are enforced to lie directly

on the hyperplane given by w =
∑m+2q

i=1 βikx̃i (x̃ can denote an element of
the training set and an element of the Universum), then 〈w, kzj 〉 = 0 for
all zj ∈ U. This also holds for all linear combinations of the kzj

, because Enforcing the
solution w of an
SVM to be orthog-
onal to span{U}
means making
the resulting
function invariant
against features
represented by
the Universum.

〈w,
∑q

j=1 υjkzj 〉 =
∑q

j=1 υj〈w, kzj 〉 = 0. Therefore, w is orthogonal to any
element of span{U} and, equivalently, to any function represented by
linear combinations of elements of U in H. If the kernel is seen as a
kind of filter, where the filter response k(x, x′) indicates how much the
feature represented by an element x is contained in another element x′,
using a hard margin U-SVM with ε = 0 corresponds to requiring that
the resulting function w should not use the features represented by the
elements of U.

The roadmap of this section is as follows: First, it is shown that a
hard margin U-SVM with ε = 0 and no offset b minimises the norm of
w in the orthogonal complement span{U}⊥ of span{U} in H by showing
that the optimisation problem has a certain form. Then it is shown that
a hard margin SVM without offset b and a kernel that is restricted to the
complement of span{U} has exactly this form therefore demonstrating
the equivalence of both approaches. Afterwards, the soft margin case
with αi bounded by C or CU and the case where b 6= 0 is allowed, are
discussed.

The optimisation problem (2.8) for the U-SVM is given by

maximise %>β − 1
2
β>Kβ (2.25)

s.t. y>β = 0
0 ≤ yiβi ≤ C for all 1 ≤ i ≤ m

0 ≤ yiβi ≤ CU for all m < i ≤ m + 2q,

where all Universum points have been added twice with opposite labels
ỹi to the optimisation problem, βi = αiyi, %i = ỹi for 1 ≤ i ≤ m and
%i = −εỹi for m < i ≤ m+2q. The next lemma establishes what has been
described intuitively above.

LEMMA 2.1: Setting ε = 0, CU = ∞ and b = 0 in the optimisation
problem (2.25) gives rise to an equivalent optimisation problem which
has an optimal solution in the orthogonal complement span{U}⊥ of
span{U}, i.e. the optimal solution of this problem has the property
〈w∗, kz〉 = 0 for all kz ∈ span{U}.

PROOF: The formulation (2.25) will first be adapted to the situa-
tion ε = 0, CU = ∞ and b = 0 in order to make it better suited for
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analysis. Let β(l) and β(u) denote the β part for the training and the
Universum points, respectively. Since ε = 0, the linear part %>β of
the objective function becomes y(l)>β(l), where y(l) denotes the vector
of labels for the training examples. The linear constraint y>β only
entered the optimisation problem (2.25) to enforce the optimality con-
dition for the offset b (see 2.2.1.1). Hence, it can be removed for the Since ε = 0, the

linear part of the
SVM objective has
only Lagrange
multipliers from
the labelled
training examples
L. The linear
equality constaint
is removed from
the optimisation
problem because
b = 0.

current situation. Since CU = ∞ the β(u) are unbounded and the con-
straint 0 ≤ yiβi ≤ CU for all m ≤ i ≤ m + 2q can be removed. Noting that
||w||2 = 〈

∑m+2q
i=1 βikx̃i ,

∑m+2q
j=1 βjkx̃j 〉 = β>Kβ, the adapted optimisation

problem can be written as

maximise y(l)>β(l) − 1
2
||w||2 (2.26)

s.t. 0 ≤ yiβi ≤ C for all 1 ≤ i ≤ m.

Let now w(l) =
∑m

i=1 βikx̃i denote the part of w that consists of linear
combinations of training points kxi

and w(u) =
∑m+2q

i=m+1 βikx̃i
the part

consisting of Universum points. Furthermore, let w(l)
|| ∈ span{kz|z ∈ U}

be the part of w(l) that can be expressed by linear combinations of
elements in U and let w(l)

⊥ = w(l) −w(l)
|| ∈ span{kz|z ∈ U}⊥ its orthogonal

complement. Then w can be decomposed the following way:

w = w(l) + w(u)

= w(l)
⊥ + w(l)

|| + w(u).

Substituting that into equation (2.26) yields Proof in a nut-
shell: Decompose
w into a parallel
and an orthogo-
nal part. The opti-
mal choice for the
optimiser is to set
the parallel part
to zero.

y(l)>β(l) − 1
2
||w||2 = y>β(l) − 1

2
||w(l)

⊥ + w(l)
|| + w(u)||2

(i)
= y>β(l) − 1

2
||w(l)

⊥ ||
2 − 1

2
||w(l)

|| + w(u)||2,

where (i) follows from the fact that w(l)
|| is orthogonal to all elements of

span{kz|z ∈ U} and therefore

||w(l)
⊥ + w

(l)
|| + w(u)||2 = 〈w(l)

⊥ + w
(l)
|| + w(u),w

(l)
⊥ + w

(l)
|| + w(u)〉

= 〈w(l)
⊥ ,w

(l)
⊥ + w

(l)
|| + w(u)〉+ 〈w(l)

|| + w(u),w
(l)
⊥ + w

(l)
|| + w(u)〉

= 〈w(l)
⊥ ,w

(l)
⊥ 〉+ 2

=0z }| {
〈 w

(l)
⊥|{z}

∈span{kz|z∈U}⊥

, w
(l)
|| + w(u)| {z }

∈span{kz|z∈U}

〉

+〈w(l)
|| + w(u),w

(l)
|| + w(u)〉

= ||w(l)
⊥ ||2 + ||w(l)

|| + w(u)||2.

Since (2.26) needs to be maximised, the optimal choice of β(u) and
therefore w(u) is such that w(u) = −w(l)

|| and therefore ||w(l)
|| + w(u)||2 =
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||w(l)
|| − w(l)

|| ||
2 = 0. Since the elements of β(u) are unbounded due to

CU = ∞ and since w(l)
|| ∈ span{U}, this is always possible and therefore

the optimisation problem (2.26) can also be written as

maximise y(l)>β(l) − 1
2
||w(l)

⊥ ||
2 (2.27)

s.t. 0 ≤ yiβi ≤ C for all 1 ≤ i ≤ m.

�

The lemma concludes the first part of this section. The next step
is to show that the optimisation problem of a standard SVM with an
arbitrary kernel restricted to span{U}⊥ has exactly the same form as in
lemma 1. For a given kernel k, its restriction to the subspace spanned
by the set {kz|z ∈ U} is given by [42]:

k||(x, x′) =
q∑

r,s=1

(K−1
(U,U))rsk(x, zr)k(x′, zs).

The kernel k⊥ living on the complement of the subspace span{kz|z ∈ U}
is then simply obtained by subtracting k|| from k:

k⊥(x, x′) = k(x, x′)− k||(x, x′)

= k(x, x′)−
q∑

r,s=1

(K−1
(U,U))rsk(x, zr)k(x′, zs).

Here, K(U,U) denotes the kernel matrix computed only on the elements
of U. With these tools at disposal, it is possible to prove the second
lemma.

LEMMA 2.2: For b = 0 and a given kernel k, the optimisation prob-
lem of a standard SVM with the kernel k⊥ induced by a set U has the
form of (2.27).

PROOF: Using the notation from above, the optimisation problem for Proof in a nut-
shell: Use a
kernel that has
the Universum
projected out and
show that it has
the same form as
the problem in
lemma 1.

a standard SVM with kernel k⊥ is given by

maximiseβ(l) y(l)>β(l) − 1
2
β(l)>K⊥

(l,l)β
(l) (2.28)

s.t. y(l)>β = 0
0 ≤ yiβi ≤ C for all 1 ≤ i ≤ m,

where K⊥
(l,l) denotes the kernel matrix on the training examples for

kernel k⊥. It is important to note that in this setting the Universum
points enter the SVM optimisation problem solely through the kernel
k⊥. Apart from using a special kernel, (2.28) is just the formulation of
a normal SVM.
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As before, the equality constraint y(l)>β = 0 can be ignored. Ex-
panding the kernel matrix in the objective function of (2.28) yields

y
(l)>

β
(l) −

1

2
β

(l)>
K
⊥
(l,l)β

(l)

=

mX
i=1

yiβi −
1

2

0@ mX
i,j=1

βiβj

0@k(xi, xj)−
qX

r,s=1

(K
−1
(U,U))rsk(xi, zr)k(xj , zs)

1A1A
=

mX
i=1

yiβi −
1

2

mX
i,j=1

βiβjk(xi, xj) +
1

2

mX
i,j=1

βiβj

qX
r,s=1

(K
−1
(U,U))rsk(xi, zr)k(xj , zs)

=

mX
i=1

yiβi −
1

2
||w(l)||2 +

qX
r,s=1

 
mX

i=1

βik(xi, zr)

!0@ mX
j=1

βjk(xj , zs)

1A (K
−1
(U,U))rs

= y
(l)>

β
(l) −

„
1

2
||w(l)||2 −

1

2
||PUw

(l)||2
«

,

where PU is the projection operator that projects onto the subspace
span{kz|z ∈ U}. Using the same notation as in the proof of lemma 1
w(l) can be decomposed into w(l) = w(l)

⊥ + w(l)
|| :

m∑
i=1

yiβi −
1
2

(
||w(l)||2 − ||PUw||22

)
= y(l)>β(l) − 1

2

(
||w(l)

|| + w(l)
⊥ ||

2 − ||PUw(l)||2
)

(i)
= y(l)>β(l) − 1

2

||w(l)
⊥ ||

2 + ||w(l)
|| ||

2 − ||PUw(l)||2︸ ︷︷ ︸
=0, since PUw=w

(l)
||


= y(l)>β(l) − 1

2
||w(l)

⊥ ||
2,

where (i) follows from the orthogonality of w(l)
⊥ and w(l)

|| , i.e. 〈w(l)
⊥ ,w(l)

|| 〉 =
0. Since the projection of w(l) onto span{kz|z ∈ U} is exactly PUw(l) =
w(l)
|| , both norms ||w(l)

|| ||
2 and ||PUw(l)||2 cancel, and the optimisation

problem has the form of (2.27), as claimed in the lemma.

�

Lemmata 2.1 and 2.2 establish that a hard margin U-SVM without
offset b and the width of the ε-tube around the hyperplane for the ε-
insensitive loss set to zero only optimises w on the intersection of the
spaces span{kz|z ∈ U}⊥ and span{kx|x ∈ L}. When relaxing the hard
margin constraint such that the Universum points are not forced to lie
exactly on the hyperplane, the above calculations remain valid apart
from one main difference which will be discussed next.

The only change to the above setting is CU < ∞. This means that the
slack variables ϑj in equation (2.9) are allowed to have positive values,
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i.e. deviations from the hyperplane are possible for Universum points.
The penalisation of deviations from the margin ϑj by a CU < ∞ trans-
forms into upper bounds on the corresponding Lagrangian multipliers
0 ≤ yjβj = αj ≤ CU in the dual problem. A comparison of the objective
functions of lemma 2.1 and lemma 2.2 shows the effect of a bounded
Lagrange multiplier on the projections: Soft margin on

U corresponds to
”softly projecting
out the Universum
elements”

Lemma 2.1 : y(l)>β(l) − 1
2
||w(l)

⊥ ||
2 − 1

2
||w(l)

|| + w(u)||2

Lemma 2.2 : y(l)>β(l) − 1
2

(
||w(l)

|| ||
2 + ||w(l)

⊥ ||
2 − ||PUw(l)||2

)
As already mentioned in the proof of lemma 2.1, for unbounded β(u)

the optimal choice for β(u) and therefore for w(u) is −w(u) = w(l)
|| =

PUw(l) in order to eliminate the second squared norm. A comparison
of the coefficients of PUw(l) with the coefficients in the expansion of
−w(u) reveals the effect of a bounded Lagrange multiplier in terms of
the projection:

−w(u) = PUw(l)

q∑
j=1

(β(u)
j + β

(u)
j+q)kzj =

q∑
j=1

−1 ·
q∑

r=1

(K−1
(U,U))rj〈w(l), kzr 〉︸ ︷︷ ︸

(β
(u)
j +β

(u)
j+q)

kzj
.

The equations above need a little explanation: Since every kzj appears
twice in the sum for w(u) in (2.9), the two coefficients corresponding
to the same element kzj can merged into a single coefficient β

(u)
j + β

(u)
j+q

yielding w(u) =
∑q

j=1(β
(u)
j + β

(u)
j+q)kzj . When summing only once over U,

two coefficients βj and βj+q can be combined per element kzj . The
coefficients (β(u)

j + β
(u)
j+q) for kzj are then obtained by expanding the

expression for PUw(l) and comparing the coefficients. It follows that
β

(u)
j + β

(u)
j+q = −

∑q
r=1(K

−1
(U,U))rj〈w(l), kzr 〉.

Since the absolute values |β(u)| are bounded by CU, it might not be
possible to express the value of −

∑q
r=1(K

−1
(U,U))rj〈w(l), kzr 〉 by β

(u)
j +β

(u)
j+q,

because it might simply be too large. In this casem the optimal value
PUw(l) for w(u) cannot be reached. Thus, the result could be called
soft projection: To capture as much as possible from PUw(l) by −w(u) in
order to minimise the norm ||w(l)

|| + w(u)||2 = ||PUw(l) + w(u)||2 as small

as possible. Shrinking it to zero is only possible if PUw(l) falls into the
set that is expressible as linear combinations of the kzj with bounded
coefficients. This situation is sketchily depicted in figure 2.5. The case b 6=

0 makes a geo-
metrical interpre-
tation difficult.

So far b was assumed to be zero, i.e. no offset b was used. A non-
zero b complicates the situation, because the linear equality constraint
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Figure 2.5: The set of all possible linear combinations of z1 and z2 for bounded

coefficients 0 ≤ |β1| ≤ 1.2 and 0 ≤ |β2| ≤ 1.9.

y>β = 0 enters the optimisation problem (2.26). Since the Univer-
sum points have associated labels in (2.26), too, the equality constraint
poses a balancing condition on all coefficients β. If the coefficients for
the Universum points have large positive values, the coefficients for
the training points must have a fair amount of negative values and vice
versa in order to make all coefficients sum to zero. Unfortunately, this
makes a geometric interpretation difficult. One intuition, is that opti-
mising (2.9) with an offset b will adjust b in a way such that there is an
optimal trade-off between centring the hyperplane on the Universum
points and placing it between the two labelled classes.

How can the relation between the U-SVM and the kernel on the A Universum
specifies noise or
invariance direc-
tions respectively.

orthogonal complement of span{kz|z ∈ U} help to characterise help-
ful Universum sets? On the one hand, when seeing kz = k(z, ·) as a
filter that responds to a specific pattern defined by z, enforcing the
hyperplane normal w to be orthogonal to these filters means making
it invariant against features inside span{kz|z ∈ U}. When w is used
to predict the label of a test example by ŷ = sgn (〈w, kx〉), the part of
kx that lies inside span{kz|z ∈ U} is not used for prediction since it
does not contribute to 〈w, kx〉. A good choice of the Universum could
therefore be a set of data points that represent the desired directions
of invariance. Those could be original examples changed by certain
transformations the solution w should be invariant against, like rota-
tions or translations. Another possible Universum set would be sam-
ples from the noise distribution, if the loss function does not reflect the
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real noise distribution for some reasons. There might be cases where
such noise samples can be obtained empirically without knowing the
actual form of the noise distribution. Another link between the Univer-
sum algorithm and the incorporation of invariance against undesired
noise directions is explored in the following section.

2.4.2 Least Squares Universum, Kernel Oriented Prin-
cipal Component Analysis and Kernel Fisher Dis-
criminant Analysis

The following considerations relate the least squares Uls-SVM (see Uls-SVM is equiv-
alent to a hy-
brid of kFDA and
a special form of
kPCA.

2.2.1.2) to the kernelised versions of two well known learning algo-
rithms: kernel Principal Component Analysis (kPCA) and kernel Fisher
Discriminant Analysis (kFDA) [85]. After a brief introduction of both
algorithms in the linear domain along with the corresponding optimi-
sation problemsthey are extended to the kernelised versions. Finally,
the equivalence to the Uls-SVM will be shown.

Principal Component Analysis (PCA) [23] is an unsupervised feature Principle com-
ponent analysis
finds a lower-
dimensional
basis that
minimises the
reconstruction
error.

extraction algorithm that has already been used in statistics before
many other learning algorithms were invented. The underlying idea is
very simple: Given a set X = {xi}i=1,...,m ∈ Rd1 of vectorial data, the
objective is to find an orthonormal basis B = {bk}k=1,...,d2 with d2 < d1

of a subspace of Rd1 such that the reconstruction error

`re(x, PBx) = ||x−
d2∑

i=1

bi(PBx)i||2

between x and the projection PBx of x onto the Basis B is minimised
[21]. The elements of B are called principal components. The moti-
vation for finding a lower dimensional representation PBx of x can be
denoising the data, by assuming isotropic Gaussian noise in the part
of the space that gets projected out. Another motivation is reducing the
dimensionality of the data for reasons of algorithmic efficiency.

As can be seen from the equation above, the loss function of PCA Principle compo-
nent analysis is
a factor analyser
with orthogo-
nal factors and
an isotropic
Gaussian noise
model.

implements a Gaussian noise model with independent and equal noise
in each direction. In fact, PCA is a special case of a more general
class of algorithms, called factor analysis, [77] that allows for different
amounts of noise in each direction of the space.

Setting the first derivative of the loss function to zero shows that the
desired basis B is given by the eigenvectors b1, ...,bd2 corresponding to
the d2 largest eigenvalues of the covariance matrix S = 1

|X|
∑

x∈X xx>.
Here, w.l.o.g. x ∈ Rd1 is assumed to have zero mean. Since S is The principle

components point
into the direc-
tions of maximal
variance.

symmetric, the eigenvectors are already orthogonal. Geometrically, the
first eigenvector b1 points in the direction of maximal variance of X,
the second eigenvector in the direction of maximal variance that is
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orthogonal to b1, and so on. The lower dimensional representation
PBx of a vector x is then simply its projection onto the basis B, i.e.
PBx = (〈b1,x〉, ..., 〈bd2 ,x〉)>.

One way to obtain the eigenvectors of a symmetric matrix S is to
maximise the Rayleigh Quotient [85]

maximisew
w>Sw
〈w,w〉

. (2.29)

The solution of this optimisation problem yields the eigenvector corre-
sponding to the largest eigenvalue of S. If the resulting vector w is not
of length one, it can simply be normalised since the normalisation fac-
tor will appear in the numerator and the denominator of the Rayleigh
quotient and hence cancel. For computing another eigenvector, S is
deflated, that is w is projected out by S/w := S−ww>, and the optimi-
sation problem is solved again on S/w.

Stating the optimisation problem for PCA in terms of the Rayleigh
Quotient offers the possibility for an interesting variation of PCA, called
oriented Principal Component Analysis (oPCA). Since any symmetric,
positive definite matrix G with full rank gives rise to a dot product
〈w,w′〉G = w>Gw′ [27], the dot product in the denominator of (2.29)
can be replaced by any other bilinear symmetric form w>Gw. This Oriented Principle

Component Anal-
ysis: PCA with an
extra noise covari-
ance G.

yields the optimisation problem for oPCA:

maximisew
w>Sw
w>Gw

. (2.30)

The solution of oPCA can be obtained by solving a generalised eigen-
value problem Sb = λGb, which can in turn be transformed into a
normal eigenvalue problem. The effect of G on the solution b1, ...,bd2

of (2.30) is that the solution must implement a trade-off between max-
imising w>Sw and minimising w>Gw. If G is interpreted as a co-
variance matrix, the minimising directions are the ones with minimal
variance of the data that gave rise to G. Therefore, G can be seen as
the covariance matrix of the noise on the data X, encoding directions
the desired solution of (2.30) should be invariant against. Since the
resulting principal components of (2.30) are as orthogonal as possible
to the eigenvectors of G, the resulting basis b1, ...,bd2 is more robust
against the directions of maximal variance specified by G. This is the
motivation for oPCA.

Fisher Discriminant Analysis (FDA) [28] is an early supervised clas- Fisher discrim-
inant analysis
finds a lin-
ear subspace
that maximises
the inter-class
variance and
minimises the
inner-class
variance.

sification algorithm that has an objective function which is very similar
to the one of oPCA. The underlying idea of FDA is again very simple:
Find the most discriminating direction w by maximising the variance
between the projections of both classes onto w (inter-class variance)
and minimising the variance of the projections within each single class
(intra-class variance) at the same time. In contrast to the unsupervised
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algorithms PCA and oPCA, FDA requires labelled data. The algorithm
is now stated for the binary case, i.e. R = {−1,+1}.

Given a set of labelled data points L = {(yi,xi)}i=1,...,m let c+ :=
1

|I+|
∑

i∈I+ xi be the mean of all positively labelled examples, where
I+ and I− are the index sets for all positive and all negative exam-
ples, respectively. Let c− be defined analogously. In order to write
the optimisation problem in the style of equation (2.30), two matri-
ces SB := (c+ − c−)(c+ − c−)> and SW :=

∑
j∈I+(xj − c+)(xj − c+)> +∑

j∈I−(xj − c−)(xj − c−)> are defined, playing the role of the inter-class
variance and the intra-class variance, respectively. The corresponding
optimisation problem can then be stated as

maximisew∈Rd1

w>SBw
w>SW w

. (2.31)

As for oPCA, the solution can be obtained by solving the generalised
eigenvalue problem SBw = λSW w.

In the following, the kernelised versions of PCA, oPCA and FDA PCA, oPCA and
FDA can be com-
puted in an RKHS
via the kernel
trick.

are stated. PCA was generalised to reproducing kernel Hilbert spaces
by [80]. The principal components are again linear combinations of
the kxi . Therefore, each principal component bk ∈ H in the RKHS
is represented by a set of coefficients αj for the different elements
kxi

. These sets of coefficients {αj}j=1,...,d2 are given by the eigenvec-
tors of the kernel matrix K of X. In order to normalise bk ∈ H to
length one, the coefficients α have to be divided by the square root of
the eigenvalue corresponding to bk. The computation of the projection
Pkx =: x̂ = (x̂1, ..., x̂d2)

> of a new point x is the dot product between kx

and the principal components bk in H . By virtue of the construction
of the dot product in H, the computation boils down to a sum of kernel
functions at x and xi:

x̂i = 〈bi, kx〉

=

〈
m∑

j=1

αi
jkxj , kx

〉

=
m∑

j=1

αi
j〈kxj , kx〉

=
m∑

j=1

αi
jk(xj , x).

As pointed out by [95], the kPCA problem can be solved by writing it
in a least squares SVM like fashion. The trick is to introduce slack
variables ξi that hold the value of the projection 〈w, kxi

〉 of xi onto w,
where the weight vector w of the SVM takes over the role of the principal
component. Since only the direction of w and not its length changes
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the value of the Rayleigh quotient, the length of w is fixed to one. This
is enforced by a constraint 〈w,w〉 = 1. When formulating this as an
optimisation problem with Lagrange multipliers, it turns out that the
resulting optimisation problem is the same as solving a least squares
SVM with target values yi = 0 for all xi ∈ X. A similar trick will be used
later when relating oriented kernel PCA and kernel FDA to the Uls-SVM.

The variation of kernel oPCA considered in this thesis uses the
Universum points to build the noise covariance matrix G of equa-
tion (2.30). This type of kernel oPCA (koPCA) is obtained by writ-
ing w as a linear combination of training and Universum points w =∑m

i=1 λikxi +
∑q

j=1 υjkzj as in the case of SVMs, and using the simple

matrix algebra fact that w>
(∑m+q

i=1 x̃ix̃>i
)
w =

∑m+q
i=1 〈w, x̃i〉 · 〈w, x̃i〉: Kernel oPCA

with a noise
covariance matrix
obtained from the
Universum points
U

maximisew

Pm
i=1〈w, kxi 〉 · 〈w, kxi 〉Pq
j=1〈w, kzj 〉 · 〈w, kzj 〉

⇔ maximiseλ,υ

Pm
i=1〈

Pm
k=1 λkkxk +

Pq
l=1 υlkzl , kxi 〉2Pq

j=1〈
Pm

k=1 λkkxk +
Pq

l=1 υlkzl , kzj 〉2
.

Using the linearity of the dot product and writing α =
(

λ
υ

)
the optimi- Kernel oPCA can

also be written as
a Rayeigh Quo-
tient and solved
by a generalised
eigenvalue prob-
lem.

sation problem boils down to

maximiseα

α>K(V,X) ·K(X,V)α

α>K(V,U) ·K(U,V)α
, (2.32)

where V := X ∪ U is the union of the training and Universum examples
and K(X,V) and K(U,V) denote the kernel matrices between the training
examples and V and the Universum examples and V, respectively. As
usual, the solution of (2.32) can be obtained by solving a generalised
eigenvalue problem.

Kernel Fisher Discriminant Analysis (kFDA) [60] can be obtained by
the same strategy that has been used for koPCA. To avoid drowning in
huge formulae, a little more notation is introduced before stating the
optimisation problem. Let 1+ be a vector with entries

1+
i =

{
1 for i ∈ I+

0 else

and let 1− be defined analogously. For K := K(X,X) let µ+ := 1
|I+|K1+

and µ− := 1
|I−|K1− denote projections of the training examples onto the

class means in H, i.e. µ+
i equals the projection of xi onto the mean of

the positive examples in H (see [81, 85] for a more detailed treatment
of projections in H). Furthermore, let µ := µ+ − µ−, M := µµ> and Kernel FDA can

also be written as
a Rayeigh Quo-
tient and solved
by a generalised
eigenvalue prob-
lem.

N := µµ> − |I+|µ+ − |I−|µ−. Then the kFDA optimisation problem can
be stated as [60]:

maximiseα
(α>µ)2

α>Nα

⇔ maximiseα
α>Mα

α>Nα
. (2.33)
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As usual, this corresponds to a generalised eigenvalue problem. If N
happens to not have full rank, the problem ill-posed. This can be tack-
led by regularising N, i.e. by replacing it by Ñ = N + γI with γI being a
multiple of the identity matrix.

Interestingly, the kFDA problem can also be casted in an SVM like Just as PCA and
kPCA, kFDA can
be written as an
SVM style prob-
lem

optimisation problem [62], making it suitable for a bigger amount of
training examples. To transform (2.33) into a quadratic program, i.e.
the optimisation of a quadratic objective function with linear constraints,
two key observations are crucial. Firstly, the matrix M = µ>µ has only
rank one since it is an outer product of a vector with itself. Secondly, as
in the Rayleigh-Quotient formulation of PCA, scaling α does not change
the values of the objective function (2.33). Therefore, α>µ can be fixed Transforming

kPCA into a
quadratic prob-
lem

to an arbitrary non-zero value. The authors of [62] use α>µ = 2. When
fixing α>µ = 2, maximising (2.33) amounts to minimising α>Nα. In-
troducing an additional regulariser Θ(α) to cover cases in which N does
not have full rank, the quadratic program for kFDA is given by

minimiseα αN>α + CΘ(α)
s.t. α>µ = 2.

The authors of [61] go even further and rephrase the optimisation prob-
lem in order to get rid of the matrix N. This can be achieved via another
observation about the Fisher Discriminant Analysis that has already
been stated above. FDA tries to minimise the variance of the projec-
tions onto w within each class while maximising the distance between
the average outputs for each class. This leads to the final optimisation
problem stated in [61]:

minimiseα,b,ξ ||ξ||2 + CΘ(α) (2.34)

s.t. Kα + 1 · b = y + ξ

ξ>1s = 0 for s = ±.

Both optimisation problems are equivalent. This can be seen by not-
ing that Kα + 1 · b are the projections of the training examples on the
most discriminating direction represented by the coefficients α. Since
ξ holds the deviations of the projections from the fixed means y for
each class, the minisation of ||ξ||2 minimises the inner-class variance.
The regulariser Θ(α) ensures that the class means are pushed as far
apart as possible in a maximal margin like manner. This maximises
the inter-class variance. The constraints ξ>1s = 0 for s = ± ensure
that the class means are exactly 1 and −1. The proof for this equiva-
lence is omitted in [61].

After introducing all the ingredients, the relation to the Uls-SVM may
finally be discussed. As mentioned above, the Universum examples will
take over the role of samples from the noise distribution and their co-
variance matrix will serve as the matrix G in the oPCA algorithm (2.30).



CHAPTER 2. THE UNIVERSUM ALGORITHM 70

(0,0) 

w
1
 

w
2
 

max 
min 

w
1
 

w
2
 

max 

min 

(0,0) 

Figure 2.6: Visualisation of the objectives of Fisher Discriminant Analysis (left) and

the hybrid of Fisher Discriminant Analysis and Oriented Principal Component Analysis

(right). FDA tries to minimise the variance of the projections onto w (blue and red Gaus-

sians) while pushing them as far apart as possible. The hybrid does exactly the same

with the only difference that it additionally tries to minimise the projections of another

dataset (black Gaussian).

The relation between oPCA and Uls-SVM becomes obvious through the
observation that in oPCA the resulting vector w should be as orthogo-
nal as possible to the eigenvectors of G, i.e. w>Gw should be as small
as possible, while in Uls-SVM w should be as orthogonal as possible
to the Universum examples in U. This cannot be the whole story since
oPCA is an unsupervised algorithm, while Uls-SVM is supervised like
FDA and kFDA. In fact, Uls-SVM is equivalent to a hybrid between both
algorithms, where the main algorithm consists of kFDA with an addi-
tional koPCA term in the denominator. This is shown in the following
paragraphs.

Defining c̃ := 1
2 (c+ + c−), the primal Rayleigh Quotient optimisation Rayleigh Quotient

hybrid of kFDA
and koPCA.

problem is given by:

maximisew
w>

from FDAz }| {
(c+ − c−)(c+ − c−)>w

w>(C

X
k=±

X
i∈Ik

(xi − ck)(xi − ck)>

| {z }
from FDA

+CU

qX
j=1

(zj − c̃)(zj − c̃)>| {z }
from oPCA

)w

.(2.35)

The zero mean assumption in PCA and oPCA has been replaced by
centring the Universum points to c̃, i.e. placing them exactly in the
middle between the two class means c+ and c−.

By the same arguments as for kFDA, (2.35) can also be transformed
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into a quadratic program

minimisew Θ(w) (2.36)

+w>(C
∑

k=±
∑

i∈Ik(xi − ck)(xi − ck)> + CU

∑q
j=1(zj − c̃)(zj − c̃)>)w

s.t. w>(c+ − c−) = 2

and rephrased into: Quadratic pro-
gram for kFDA-
oPCA hybridminimisew,b Θ(w) + C||ξ||22 + CU||ϑ||22 (2.37)

s.t. 〈w,xi〉+ b = yi + ξi for all 1 ≤ i ≤ m

〈w, zj〉+ b = ϑj for all 1 ≤ j ≤ q

ξ>1k = 0 for k = ±.

Choosing Θ(w) = ||w||2 and ignoring the constraint ξ>1k = 0, equation
(2.37) has exactly the same form as the primal optimisation problem
for the Uls-SVM as stated in equation (2.18). Therefore, a Uls-SVM is
equivalent to a hybrid of kFDA and koPCA up to a linear equality con-
straint.

For transforming (2.36) and (2.37) into algorithms in an RKHS H,
a little more notation will be helpful. Let 1U be a vector in the style of
1+ indicating if a point is a Universum point and let µU := 1

qK(V,V)1U.
Furthermore, let U := K(V,U)K>

(V,U) − qµU(µ+ + µ−)> + q
4 (µ+ + µ−)(µ+ +

µ−)>, L = K(V,X)K>
(V,X) − |I

+| · µ+µ+> − |I−| · µ−µ−> and b = 1 · b. The
dual versions of (2.36) and (2.37) then have the following form:

minimiseα Θ(α) + Cα>Lα + CUα>Uα (2.38)

s.t. α>(µ+ − µ−) = 2

and Dual quadratic
programs for
the kFDA-oPCA
hybrid

minimiseα,b Θ(α) + C||ξ||2 + CU||ϑ||2 (2.39)

s.t. K(X,V)α + b = y(l) + ξ

K(U,V)α + b = ϑ

ξ>1k = 0 for k = ±.

Again, equation (2.39) is equivalent to the dual version of (2.18) up to
the constraints ξ>1k = 0 for k = ±.

After tediously deriving the optimisation problems (2.38) and (2.39),
the following proposition finally states their equivalence and therefore
establishes the link between (2.35) and the Uls-SVM via (2.38) and
(2.39).

PROPOSITION: For given C and CU the optimisation problems (2.38)
and (2.39) are equivalent.

PROOF: The proof consists of two steps: In the first step, it is shown
that the feasible regions of (2.38) and (2.39) are identical with respect
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to α. The second step consists of showing that the objective functions
coincide, thus establishing the equivalence of both optimisation prob-
lems. The feasible re-

gions of (2.38)

and (2.39) coin-
cide with respect
to α.

Let α be feasible for (2.38), i.e. α>(µ+ − µ−) = 2. Then

α>µ+ −α>µ− =
1
|I+|

α>K(X,V)1+ − 1
|I−|

α>K(X,V)1−

= 2

Now b can be chosen such that

1
|I+|

(K(X,V)α + b)>1+ = 1 and
1
|I−|

(K(X,V)α + b)>1− = −1.

In particular, it holds for k = ± that

1
|Ik|

(K(X,V)α + b)>1k − 1
|Ik|

y>1k =
1
|Ik|

(K(X,V)α + b− y)>1k

=
1
|Ik|

ξ>1k

= 0

and therefore ξ>1k = 0. Thus α is feasible for (2.39).
On the other hand, if α is feasible for (2.39) then ξ>1k = 0 for k = ±.

Therefore,

ξ>1+ =
1
|I+|

ξ>1+

=
1
|I+|

(K(X,V)α + b− y)>1+

= µ+α + b− 1

and

ξ>1− =
1
|I−|

ξ>1−

=
1
|I−|

(K(X,V)α + b− y)>1−

= µ−α + b + 1.

Since

α>(µ+ − µ−) = (ξ>1+ − b + 1)− (ξ>1− − b− 1)
= 2,

it follows that α is also feasible for (2.38). The objectives of
(2.38) and (2.39)

coincide.
The second step of the proof, again, consists of two parts. In the

first part, it is shown that Cα>Lα = C||ξ||22, in the second CUα>Uα =
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CU||ϑ||22 is demonstrated. Since the difference between (2.38) and (2.39)
is just the sum of the two equalities, the identity of (2.38) and (2.39)
follows.
First, Cα>Lα = C||ξ||22 is shown:

α>Lα− ||ξ||22 = α>Lα− 〈ξ,K(X,V)α + b− y〉
= α>(K(X,V)K(X,V) − |I+|µ+µ+> − |I−|µ−µ−>)α

−〈ξ,K(X,V)α + b− y〉
(i)
= α>(K(X,V)K(X,V) − |I+|µ+µ+> − |I−|µ−µ−>)α

−〈Kxvα + b− y,K(X,V)α〉
= −α>(|I+|µ+µ+> + |I−|µ−µ−>)α− 〈b− y,y + ξ − b〉
(ii)
= −α>(|I+|µ+µ+> + |I−|µ−µ−>)α

+〈b− y,b− y〉

= −α>K(X,V)

(
1
|I+|

1+1+> +
1
|I−|

1−1−>
)

K(X,V)α

+〈b− y,b− y〉

= −(y + ξ − b)>
(

1
|I+|

1+1+> +
1
|I−|

1−1−>
)

(y + ξ − b)

+〈b− y,b− y〉

= −(b− y)>
(

1
|I+|

1+1+> +
1
|I−|

1−1−>
)

(b− y)

+〈b− y,b− y〉
= −|I+|(b− 1)(b− 1)− |I−|(b + 1)(b + 1) + 〈b− y,b− y〉
= 0.

Here, (i) follows from 〈ξ,b〉 = 0 as well as 〈ξ,y〉 = 0, while (ii) follows
from 〈ξ,b− y〉 = 0. Analogously CUα>Uα = CU||ϑ||2:

α>Uα− ||ϑ||2 = α>Uα− ||K(U,V)α + b||2

= α>(K(V,U)K(U,V) − |IU|µU(µ+ + µ−)> +

|IU|
4

(µ+ + µ−)(µ+ + µ−)>)α− 〈K(U,V)α + b,K(U,V)α + b〉

= −α>(µU(µ+ + µ−)> − |IU|
4

(µ+ + µ−)(µ+ + µ−)>)α

−2b|IU|µU>α− b>b

=
|IU|
4

(α>(µ+ + µ− − 4µU)− 2b)(α>(µ+ + µ−) + 2b)

= 0,
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where the last equality holds because of

α>(µ+ + µ−) + 2b = α>µ+ + b︸ ︷︷ ︸
=1

+α>µ− + b︸ ︷︷ ︸
=−1

= 0.

This completes the proof.

�

The proposition establishes the link between the Uls-SVM and gives Universum ex-
amples could be
constructed from
noise.

valuable insight into the role of the Universum in the Uls-SVM algo-
rithm. Since the Universum examples play the role of samples from
the noise distribution in the oPCA part in (2.35), real samples from the
noise, if available, can be centered between both classes of training ex-
amples and serve as Universum points. This does also agree with the
interpretation of the U-SVM in 2.4.1. However, the Uls-SVM does not
have the constraints ξ>1k = 0 for k = ±. These constraints state that
the ξi for each class must sum to zero, i.e. that the mean projection
onto w equals one or minus one, respectively. This can be seen as a
balancing constraint for both classes, i.e. it cannot happen that one
class shifts the mean of the other class beyond ±1. If the constraints
are removed, the class with more examples gets a higher priority in
the optimisation. Thus, there is no principled difference between the
Uls-SVM and the hybrid of kFDA and koPCA.

While the above analysis was concerned with the approximation to
the Universum inference principle as proposed by [103], the following
section establishes a more conceptual relation between the Universum
idea of Vapnik [100, 98] and a maximum entropy distribution on labels.

2.5 On the Relation between the Universum
and Maximum Entropy Distributions

This section relates the maximum number of contradictions idea for bi-
nary classification to the maximum entropy distribution [45] on labels
of the Universum points. In order to get to distributions over labels, so
called version spaces are introduced. Given a certain class of functions
H and a labelled training set L = {(xi, yi)}i=1,...,m, the version space
V(L) ⊆ H is the set of all functions that classify L correctly [64]. As in
section 2.3, the considered set of functions is an RKHS H spanned by
a kernel k. The offset b is again assumed to be zero. After introducing
version spaces, a general probabilistic framework as in [32, 33, 78] will
be imposed on this setting, allowing the assignment of probabilities to
certain subsets of H. By choosing a certain likelihood function and a
certain loss function, searching for the maximum entropy distributions
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on labels of Universum points can be seen as a soft version of choos-
ing the equivalence class with the maximum number of contradictions
on the Universum U. The entropy of the distribution of labels of U will
turn out to be a lower bound for the number of contradictions. Finally,
the relation to the Universum algorithm as proposed by [103] will be
investigated.

Before turning to the probabilistic setting, an exact definition of ver-
sion spaces [64] is given.

DEFINITION: Given a set of functions F and a set of labelled data The version
space is a sub-
set of functions
that classify
the training set
correctly.

points L = {(xi, yi)}i=1,...,m, the version space V(L) ⊆ F is the subset of
F that is consistent with the set L, that is

∀f ∈ V(L) : f(xi) = yi.

.

Since the focus of this section is on binary classification, indicator In the primal
space, examples
x ∈ D are points
and h ∈ S are
hyperplanes. In
the dual space,
examples are
hyperplanes and
linear functions
are points.

functions on the domain D of the input examples should be considered.
However, those are easily obtained by taking the sign sgn(h(x)) of the
output by h ∈ H on a certain data point x. Keeping that in mind, the
sign function will be omitted and everything will be stated in terms of
elements of H. Apart from that, this section heavily uses the self duality
of the space H by switching between the primal view, in which all data
examples are points and linear functions are hyperplanes, and the dual
view, in which all data points are hyperplanes and all linear functions
are points. So, when thinking about an element of H, the best is to
picture h ∈ H as a point in Rn. This intuition is valid in almost all cases
since both, H and Rn, are Hilbert spaces.

It is also important to realise how the data examples (xi, yi) create The version space
for a training set
L is an intersec-
tion of halfspaces.

a version space on H. Sticking with the dual view, every element kxi is
seen as a hyperplane in H. Before seeing any training example, the ver-
sion space is just the function space H itself. The first training example
(x1, y1) divides it into two parts: the functions that have positive output
on kx1 and the functions that have negative output on kx1 . Whichever
half agrees with the label yi is the new version space for (x1, y1). When
seeing more training examples, this process carries on, cutting the ver-
sion space in smaller and smaller pieces. Eventually, the version space
might become empty. This is the case if L is not linearly separable in
H. Since this section tries to give a rather conceptual view about the
Universum setting in version spaces, the case V(L) = ∅ is excluded in
the following considerations.

For a given version space V, a probabilistic model can be constructed Probabilistic
model on the
version space

from a distribution over its elements. Let L = {(xi, yi)}i=1,...,m be a set
of m independently sampled points from the distribution of training
points PXY, and let U = {zj}j=1,...,q be a set of q independently sampled
points from the distribution of Universum points PU. In the follow-
ing, X = {xi}i=1,...,m and Y = {yi}i=1,...,m are used to denote the input
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elements and the labels of L, respectively. Furthermore, a random vari-
able with an exponent m denotes m independent random variables from
the same distribution. Two bracketed random variables (XY) represent
a sample from the joint distribution PXY .

Let PH be a prior over functions in H. Given a likelihood function Posterior over
functionsPY|X,H, the posterior over hypotheses given the data set L is given by

[38]

PH|L(h) =
P(XY)m|h(L)

EH[P(XY)m|H(L)]
PH(h)

(i)
=

PYm|X,h(Y)
EH[PYm|X,H(Y)]

PH(h),

where (i) follows from

P(XY)m|h(L) = PYm|X,h(Y)PXm|h(X) = PYm|X,h(Y)PXm(X).

Choosing the likelihood function to be the so called PAC-likelihood PAC likelihood

PY|x,h(y) = δy=h(x)

with δy=h(x) =
{

1 if y = h(x)
0 else ,

the posterior simplifies to

PH|L(h) =

{
PH(h)

PH(V(L)) if h ∈ V(L)
0 else

. (2.40)

It is important to note that the PAC-likelihood only assigns nonzero When using the
PAC likelihood,
the posterior is
proportional to
the mass of the
version space
with respect to
the prior.

probability to the elements of the version space since the delta func-
tion is zero outside of V. Therefore, calculating the posterior amounts
to simply restricting the prior belief to the version space V and normal-
ising it to probability mass one.

Once the posterior is computed, the Bayesian strategy mentioned
in 1.3.2 can be used to predict a label on a new point x by choosing
the label y ∈ R that has minimal expected error with respect to the
posterior PH|L(h) and a given loss function `:

BL(x) = argminy∈REH|L[`(H(x), y)].

If the loss function is chosen to be the zero-one loss `0−1(y, y′) = 1−δy=y′ ,
the predicted label is just the label corresponding to the larger area of
the version space with respect to the probability measure PH [38] since
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BL(x) = argminy∈REH|L[`0−1(H(x), y)]

= argminy∈R

∫
H

`0−1(h(x), y)PH|L(h)dh

= argminy∈R

∫
H

`0−1(h(x), y)
PH(h)

PH(V(L))
dh

= argminy∈R

∫
H

(1− δh(x),y)PH(h)dh

= argminy∈R

∫
H

PH(h)dh−
∫
H

δh(x)=yPH(h)dh

= argminy∈R1−
∫
H

δh(x)=yPH(h)dh

= argmaxy∈R

∫
H

δh(x)=yPH(h)dh.

Therefore, speaking figuratively, the Bayesian prediction strategy Bayesian predic-
tion strategy for
`0−1 is equivalent
to choosing the
larger half of V in-
duced by a test
example

proceeds as follows. When predicting the label of a new point x, the
version space V is divided into two parts: the part that classifies x
positively and the part that classifies it negatively. The prediction then
consists of choosing the half (one of them might be empty) that has a
larger probability mass with respect to the prior PH. As in [32, 33, 38],
BL(x) is called prediction strategy instead of prediction function since,
in most cases, there might not be a single function h ∈ H that predicts
exactly the same labels on all inputs.

Nevertheless, to get down to a single classifier hbp, one can search The Bayes Point
hbp ∈ H is a sin-
gle function that
best mimics the
Bayesian predic-
tion strategy BL

for an element in H that mimics the Bayesian prediction strategy BL as
well as possible. This element hbp is called Bayes Point [38]:

hbp(x) = argminh∈HEX[EH|L[`(h(X),H(X))]].

The authors of [38] show that under certain conditions the Bayes point
can be approximated by the center of mass of the version space V.

In the following treatment the admissible class of functions is as-
sumed to be the sphere S ⊆ H, i.e. S := {h ∈ H| ||h||2 = 〈h, h〉 = 1}. This
is no restriction since normalising the prediction function h does not
change the sign of its output. As introduced at the beginning of this
section, it is possible to picture an h ∈ S as a point on a sphere in Rn

and the image kx ∈ H of an example x ∈ D as a hyperplane in Rn cutting
through the sphere. Figure 2.7 gives a schematic illustration for three
labelled examples. The goal in the following paragraphs is to construct
a new prediction strategy that uses the Universum points in U and to
relate this prediction strategy to a maximum entropy distribution of
labels on the elements of U induced by a new test point x.

Let x be a new test point which divides the version space V(L) ⊂ S
into two nonempty halves, meaning there are elements in V(L) that
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Figure 2.7: Illustration of a version space on S ⊆ H = R3 for two positive (green

normal) and one negative (red normal) examples. In this figure R3 serves as primal and

dual space at the same time. All possible linear functions of norm one are represented by

the sphere. The examples are vectors in the primal space, and normals of hyperplanes

in the dual space.

classify x positively as well as elements that classify it negatively. In-
stead of choosing the half with the larger probability mass as in the
case of the Bayesian prediction strategy with PAC-likelihood and zero-
one loss, the new prediction strategy proceeds as follows: All hyper-
planes corresponding to points of U that cut through V(L) will intersect
with at least one half of V(L) induced by the new data point x. Ev-
ery half induced by x corresponds to a probability distribution on the
labels of a point z ∈ U by simply considering the new version space
V(L ∪ (x, y)), where y is the label of x corresponding to that half, and
using the distribution on Y as stated in (2.40) for the elements of U.
To illustrated this idea, let the considered half of V(L) be the one that New prediction

strategy: Predict
the label y for
x which gives
rise to a higher
entropy on the
Universum points.

assigns positive labels to x. This half is the version space of L ∪ (x,+)
(where ”+” is used as a shortcut for ”+1”). Just as above, the posterior
as in (2.40) can be computed by using the PAC-likelihood

PH|L∪(x,+)(h) =

{
PH(h)

PH(V(L∪(x,+))) if h ∈ V(L ∪ (x,+))
0 otherwise

.

This probability distribution can be used to define a distribution on
labels of Universum points z ∈ U by taking the probability mass of the
part of V(L ∪ (x,+)) that assigns a certain label to z and renormalising
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it to one:

PY|L∪(x,+),z(y) =
PH|L∪(x,+) (V(L ∪ (x,+) ∪ (z, y)))

PH|L∪(x,+) (V(L ∪ (x,+)))
.

This corresponds to a two layered approach. First, the new test Each test point
x divides the
version space into
two parts. Each
part can be seen
as a probability
distribution on
labels for z ∈ U.
This distribution
has an entropy.

point x cuts V(L) into two halves. Then each Universum point cuts
each of the halves again into two. Thus, given a new test point x, one
can choose between two probability distributions on labels of a single
Universum point z. Each of these label distributions has a Shannon
entropy [84]:

H[PY|L∪(x,y),z] = −
∑

y′∈{±}

PY|L∪(x,y),z(y′) log PY|L∪(x,y),z(y′).

The new prediction strategy will be to choose that label y for x which
maximises the entropy on all Universum points in U

UL,U(x) = argmaxy∈Y

∑
z∈U

H[PY|L∪(x,y),z] (2.41)

or, even more general, choose the label y for x that maximises the
expected entropy according to the distribution PU on the Universum
points

UL,PU
(x) = argmaxy∈YEU[H[PY|L∪(x,y),U]]. (2.42)

As described above, UL,U(x) is a choice over distributions that cor- Choosing a
distribution
PY|L∪(x,y),U for
labels on z ∈ U

is equivalent to
choosing a label y

for x.

respond to a certain label y on x. By choosing the distribution with
maximum entropy, a label for x is chosen. It is also important to note
that taking the expectation over PU with respect to a single sample
z ∼ PU at each time is equivalent to taking the expectation over q sam-
ples Uq = U with respect to PU. This is due to the fact that the elements
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Figure 2.8: Illustration of the decision strategy UL,U(x). The examples of L give rise to

the version space V(L) (top left). A new example from PX divides V(L) into the two parts

V(L ∪ (x, +)) and V(L ∪ (x,−)) (top right). A Universum point z ∼ PU further cuts those

two halves into four in total: V(L ∪ (x, y), (x, y′)) for y, y′ ∈ {±} (bottom left). With a prior

PH on elements of H, each part has a certain probability mass with respect to PH (bottom
right). The new prediction strategy is choosing that label y for x for which the conditional

distribution PY|L∪(x,y),z on labels y′ of Universum points has a higher Shannon entropy.
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of U are assumed to be sampled independently from PU and therefore

E(U)q

"
qX

i=1

H[PY|L∪(x,y),z ]

#

=

Z
. . .

Z
| {z }

q times

qX
i=1

H[PY|L∪(x,y),zi
]dp(zq) . . . dp(z1)

=

Z
. . .

Z
| {z }
q−1 times

0@Z q−1X
i=1

H[PY|L∪(x,y),zi
]dp(zq) +

Z
H[PY|L∪(x,y),zq ]dp(zq)

1A dp(zq−1) . . . dp(z1)

=

Z
. . .

Z
| {z }
q−1 times

q−1X
i=1

H[PY|L∪(x,y),zi
] + EU

ˆ
H[PY|L∪(x,y),z ]

˜
dp(zq−1) . . . dp(z1)

=

Z
. . .

Z
| {z }
q−1 times

q−1X
i=1

H[PY|L∪(x,y),zi
]dp(zq−1) . . . dp(z1) + EU

ˆ
E[PY|L∪(x,y),z ]

˜

=

qX
i=1

EU

ˆ
H[PY|L∪(x,y),z ]

˜
= qEU

ˆ
H[PY|L∪(x,y),z ]

˜
.

This means that the entropy over samples of size q and samples of size
one only differ by a multiplicative factor of q. Therefore, considering
the expectation over PU is equivalent to taking the expectation over
P(U)q when maximising the expected entropy on the Universum points.

How does the prediction strategy UL,U(x) relate to the idea of max- Relation between
maximum entropy
on label distribu-
tions and maxi-
mum number of
contradictions.

imising the number of contradictions on U? To investigate this ques-
tion, the idea of Vapnik has to be embedded into the described setting
first. Given a sample of training points L, a Universum U and a new
test point x, each half V(L∪ (x,±)) corresponds to an equivalence class
on V(L) as described in 2.1.2. Now, the idea of maximising the number
of contradictions embedded into version spaces is in fact very simple:
Assuming that x cuts V(L) into two non-empty parts, the goal is to
choose the half or equivalence class or label for x (all three notions are
equivalent) that has a larger number of contradictions on U. A half of
V induces a contradiction on a Universum point z ∈ U if and only if the
corresponding element kz ∈ H intersects this half, because only then z ∈ U is a contra-

diction if kz cuts
the version space.

V(L∪ (x, y)) contains functions for all possible labels on z. It might also
happen that kz cuts through both halves, therefore inducing a contra-
diction on both equivalence classes. An important observation is that
the entropy of a distribution of labels on a single Universum point z is The entropy of

PY|L∪(x,y),z is
nonzero if and
only if z ∈ U is a
contradiction on
V(L ∪ (x, y)).

nonzero if and only if kz cuts through the half that gives rise to this
distribution. This is due to the fact that for a probability distribution
on two elements the entropy H[p, 1 − p] = −p log p − (1 − p) log(1 − p) is
zero if and only if p = 0 or p = 1. If p = 1

2 the entropy is maximal
with H[ 12 , 1

2 ] = 1. Taking these notions together, it is possible to lower
bound the maximum number of contradictions in terms of the entropy
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Figure 2.9: Illustration of the link between the entropy on PY|L,z and the number of

contradictions. The space of all considered functions S ⊆ H and the set of all Universum

points is depicted by the black circle (to make it simple all Universum points are also

assumed to have norm one). The red and green points are training examples. The

version space is indicated by the cyan part in the circle. The magenta and blue line

display the number of contradictions and the entropy for the respective Universum point

on the circle: For every possible point (φ, r) (in polar coordinates) on the circle the radial

component r is enlongated by an amount proportional to the number of contradictions

or the entropy, respectively.

as defined in equation (2.41).
LEMMA: The number of contradictions ΓL,x(y, U) on a Universum U

of an equivalence class induced by (x, y) is lower bounded by the sum
of the entropies as defined in (2.41).

PROOF: Both, the number of contradictions ΓL,x(y, U) and The number of
contradictions are
lower bounded by
the entropy.

∑
z∈U H[PY|L∪(x,y),z], are greater than zero if kz cuts the version space

V(L ∪ (x, y)) and zero otherwise. Since each section by an element of U
increases ΓL,x(y, U) by one and since the maximal value of H[PY|L∪(x,y),z]
is one, i.e. when kz divides V(L ∪ (x, y)) into two halves of equal size,
the following relation holds:

0 ≤
∑

z∈U H[PY|L∪(x,y),z] ≤ ΓL,x(y, U) ≤ q.

This proves the stated lemma.

�

Figure 2.9 illustrates the situation for a single Universum point.
The lemma establishes a link between the prediction strategy UL,U(x)
and the strategy proposed by Vapnik [100, 98]. One implication is that
maximising

∑
z∈U H[PY|L∪(x,y),z] leads to a large number of contradic-

tions. However, since ΓL,x(y, U) is a much cruder measure, the entropy
can be very small while the number of contradictions is very large. This
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is the case if the elements of U only divide V(L∪ (x, y)) into very unequal
parts, i.e. one half has very little probability mass. In this situation, The Entropy of

PY|L∪(x,y),z is
only a very loose
lower bound on
ΓL,x(y, U).

the entropy will be very low, but since ΓL,x(y, U) acts like a step func-
tion that immediately jumps to one once kz cuts through V(L ∪ (x, y)),
z counts as a full contradiction. Nevertheless, the entropy captures an
intuitive notion of the usage of the Universum as already described in
2.1.2. The Universum is thought to be a set which the resulting clas-
sifier should be most unspecific about. Since a large entropy implies Maximising

the entropy of
PY|L∪(x,y),z

captures the
intuition of being
unspecific about
the elements of U

almost equal probabilities on the two different labels for a Universum
point z, both notions agree.

To conclude this section, the relationship between the maximum
entropy approach as stated in equation (2.42) and the loss function
on the Universum points as used by the algorithm stated in 2.2.1.1 is
investigated.

UL,U(x) is ap-
proximated by
the entropy point
hep ∈ V(L).

Since UL,U(x) is a prediction strategy and not a single function,
UL,U(x) must be approximated by a single element h ∈ H in order to
relate it to the algorithmic relaxation. Here, the same idea as for the
Bayesian prediction strategy BL(x) and the Bayes point hbp can be em-
ployed: UL,U(x) is approximated by the element hep ∈ V(L) that best
mimics the behaviour of UL,U(x) for all possible choices of L and U.
Since the hep is defined analogously to the Bayes Point above, it shall
be called Entropy Point:

hep := argmaxh∈HEX[EU[H[PY|L∪(X,h(X)),U]]].

The entropy point hep is now a single function and the relation to the
loss function on the Universum points of a U-SVM can be investigated.
The loss function for the labelled points is enforced by working inside
a version space, which has loss zero on the labelled examples by def-
inition. The following considerations do not take the SVM regularizer
into account, since there is no margin maximisation in the maximum
entropy approach. One key in the relation between the maximum en-
tropy on labels and the ε-insensitive loss on the Universum points is
the center of mass of V(L) with respect to the prior PH:

When considering a version space V(L) that has been divided into All elements of U

that are orthogo-
nal to the center
of mass hcm of
V(L ∪ (x, y)) with
respect to to PH,
have maximal en-
tropy

two halves V(L ∪ (x,+)) and V(L ∪ (x,−)) by a test example x, one can
make the following observations about the dependency between the
entropy and the direction kz points to: As already mentioned above,
the entropy H[PY|L∪(x,y),z] is maximal when dividing V(L ∪ (x, y)) into
two parts of equal size, i.e. of probability mass

PY|L∪(x,y),z(−) = PY|L∪(x,y),z(+) =
1
2
.

Now, for each V(L ∪ (x, y)) there is a point hcm with the property that
a hyperplane Ekz = {h ∈ H|〈h, kz〉 = 0} containing hcm has maximum
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Figure 2.10: Relation between the direction of a Universum point and the entropy on

its label-distribution. The sphere represents the set of all function h and all Universum

points that are assumed to have norm one for simplicity. The red and green lines depict

the normals of hyperplanes induced by training points. Each position on the sphere was

colored according to the entropy with respect to a uniform prior PH (red indicates high

values).

entropy. This point hcm is the center of mass of V(L ∪ (x, y)) since the
center of mass has the property that no matter how V(L ∪ (x, y)) is di-
vided into two pieces, each piece must have the same mass as the other
one. This means, on the other hand, that all kz that are contained in
the hyperplane Ehcm , i.e. 〈hcm, kz〉 = 0, have entropy H[PY|S∪(x,y),z] = 1
on V(L ∪ (x, y)). When moving an element kz away from Ehcm , the hy-
perplane with kz as normal divides the version space into two more and
more unequal parts and therefore the entropy H[PY|L∪(x,y),z] decreases.
Once kz has been moved so far that the hyperplane with normal kz

does not cut V(L ∪ (x, y)) anymore, then H[PY|L∪(x,y),z] = 0. So, when
looking at the sphere, the support of H[PY|L∪(x,y),z] forms a belt with
varying width that has high entropy in the middle and low entropy at
the border. Figure 2.10 illustrates this idea.

In order to relate the center of mass hcm to the solution of a U- Minimal
Kullback-Leibler-
divergence to the
uniform label
distribution P0

Y

implies maximal
entropy

SVM, it is helpful to define the Entropy Point in terms of the minimal
Kullback-Leibler divergence [18] between PY|L∪(X,h(X)),U and the uniform
distribution on labels P0

Y:

hep = argminh∈HEX[EU[D[PY|L∪(X,h(X)),U||P0
Y]]].

Both definitions are equivalent since zero KL-divergence to P0
Y implies

maximal entropy. By employing two relaxations, the solution of the
algorithm in 2.2.1.1 can be seen as an approximation to the Entropy
point hep:
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Figure 2.11: Graphs of the Kullback-Leibler-divergence, the L1 loss and the entropy.

hep(L) = argminh∈V(L)EX[EU[D[PY|L∪(X,h(X)),U||P0
Y]]]

= argminh∈V(L)EX

24EU

24 X
y∈{±}

PY|L∪(X,h(X)),U(y) log
PY|L∪(X,h(X)),U(y)

P0
Y(y)

3535
= argminh∈V(L)EX

24EU

24 X
y∈{±}

PY|L∪(X,h(X)),U(y) · (log PY|L∪(X,h(X)),U(y)− log P0
Y(y))

3535
= argminh∈V(L)EX

24EU

24 X
y∈{±}

PY|L∪(X,h(X)),U(y) log PY|L∪(X,h(X)),U(y)

3535− log
1

2

= argminh∈V(L)EX

24EU

24 X
y∈{±}

PY|L∪(X,h(X)),U(y) log PY|L∪(X,h(X)),U(y)

3535
= argminh∈V(L)EX

24EU

24 X
y∈{±}

PH(V(L ∪ (X, h(X)), (U, y)))

PH(V(L ∪ (X, h(X))))
log

PH(V(L ∪ (X, h(X)), (U, y)))

PH(V(L ∪ (X, h(X))))

3535
≈ argminh∈V(L)EX

24EU

24 X
y∈{±}

˛̨̨̨
PH(V(L ∪ (X, h(X)), (U, y)))−

1

2
PH(V(L ∪ (X, h(X))))

˛̨̨̨3535(2.43)

≈ argminh∈V(L)EX

»
EU

»˛̨
〈hcm|L∪(X,h(X)), kU〉

˛̨ 1

||kU||

––
, (2.44)

In (2.43) the Kullback-Leibler divergence is approximated by the L1 By employing two
relaxations, a re-
lation of the ap-
proach in the ver-
sion space to the
algorithmic imple-
mentation can be
established.

loss (see also figure 2.11), where the L1 loss is applied to the deviation
of the mass of V(L∪(X, h(X)), (U, y)) from half the mass of V(L∪(X, h(X))),
because PH(V(L∪(X,h(X)),(U,y)))

PH(V(L∪(X,h(X)))) = 1
2 maximises the entropy.

The second relaxation (2.44) assumes that the deviation of the mass
of V(L ∪ (X, h(X)), (U, y)) of the version space from half of the mass of
V(L ∪ (X, h(X)), (U, y)) can be approximated by

∣∣〈hcm|L∪(X,h(X)), kU〉
∣∣ 1
||kU|| .
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This relaxation can be motivated by the following considerations:
Every hyperplane induced by a Universum point z that contains

hcm|L∪(X,h(X)) divides V(L∪(X, h(X))) into two halves of equal mass. There-
fore, if 〈hcm|L∪(X,h(X)), kz〉 = 0, the entropy of z on V(L∪ (X, h(X))) is maxi-
mal. As soon as |〈hcm|L∪(X,h(X)), kz〉| grows by moving kz inside the half-
space {λ1kz + λ2h|λ1 ≥ 0}, the mass corresponding to y = 1 (or y = −1
depending on the direction of movement) becomes smaller proportional
to the angle between kz and the hyperplane Ehcm

, until kz does not cut
V(L∪(X, h(X))) anymore. From that point on, the entropy is zero. There-
fore, PH(V(L ∪ (X, h(X)), (U, y))) − 1

2PH(V(L ∪ (X, h(X)))) can be assumed
to be proportional to 1

||kz|| |〈hcm|L∪(X,h(X)), kz〉| in a limited interval, thus
motivating the second relaxation.

By replacing the expectation EU by the sum over all elements in U (2.44) could
already be used
for an algorithmic
implementation
of transductive
inference with a
Universum.

and considering only one test point x instead of taking the expectation
EX, (2.44) can already be used for an algorithmic implementation of
transductive inference with a Universum, as initially intended by Vap-
nik [100, 98].

However, the unlabelled examples have been ignored in the imple-
mentation of [103]. The next step is therefore to investigate the relation
of hep to the minimiser h∗ of (2.44).

Embedding the objective of the algorithm of [103] into the frame-
work above, the desired function of the algorithm of 2.2.1.1 can be
approximately described as:

h̃ : = argminh∈V(L)EU[|〈h, kU〉|
1

||kU||
].

In fact, in the algorithm of 2.2.1.1 kU is not normalised. The algorithm The Cone-
Universum
Uc-SVM resem-

bles (2.44) is
more closely.

which pursues this strategy is the Cone-Universum Uc-SVM described
in 2.3.

The condition for h̃ being equal to the minimiser h∗ of (2.44) is de-
scribed by

∀h ∈ S : |〈h, kz〉|
1

||kz||
= EX[|〈hcm|L∪(X,h(X))〉|

1
||kz||

]

⇔ ∀h ∈ S : |〈h, kz〉| = EX

[ ∣∣〈EH|L∪(X,h(X))[H], kz〉
∣∣ ] ,

since

h∗ = argminh∈V(L)EX

[
EU

[∣∣〈hcm|L∪(X,h(X)), kU〉
∣∣ 1
||kU||

]]
= argminh∈V(L)EU

[
EX

[∣∣〈hcm|L∪(X,h(X)), kU〉
∣∣ 1
||kU||

]]
= argminh∈V(L)EU

[
|〈h, kU〉|

1
||kU||

]
= h̃



CHAPTER 2. THE UNIVERSUM ALGORITHM 87

This condition is trivially fulfilled if supportPH ⊆ (supportPU)⊥ since Using a Univer-
sum can be seen
as defining a prior
PH of functions
that do not sup-
port the domain of
the Universum.

|〈h, kz〉| = EX

[ ∣∣〈EH|L∪(X,h(X))[H], kz〉
∣∣ ]

is trivially true for any h ∈ H and z ∈ U. Therefore, ignoring the max-
imum margin regulariser of a U-SVM, the solution of a hard margin
Universum corresponds to the approximated entropy point for the max-
imum entropy approach in the version space with a prior that is zero
on the support of the distribution of the Universum.



Chapter 3

Applications and
Experiments

This chapter is concerned with applications and experimental evalua-
tions of the Universum algorithms. The first two applications, optical
character recognition and text classification, are typical machine learn-
ing problems and have already been studied in [103, 98]. However, the
main part of this chapter is the application of the Universum idea to
applications in neuroscience, i.e. brain computer interfaces (BCI) and
neural decoding from the recorded spiking activity of a population of
neurons.

3.1 Optical Character Recognition

Dataset and experimental setting A suitable dataset for the compar- The MNIST
dataset: Classi-
fying patches of
digits

ison of the Universum implementations U-SVM and Uls-SVM1 against
their SVM counterparts on an optical digit recognition task is the MNIST
dataset [56]. This dataset comprises 60, 000 patches of handwritten dig-
its in a resolution of 28×28 for training and another 10, 000 digits for test-
ing. In the following experiments, only the training part was used. The
subproblem of classifying digit five against digit eight was chosen since
it belongs to the more difficult learning problems on the MNIST dataset.
Therefore, all examples of fives and eights were selected from the train-
ing part and were further split into a new training part of 10, 000 exam-
ples and a new testing part containing the remaining 1272 examples. Cross validation:

A technique for
model selection

From the new training set, ten disjoint sets were randomly sampled,
each of size 20, 50, 100, 200, 500 and 1000. On each of the ten datasets
of a specific size, a 10-fold cross validation determinded the selection

1The Uc-SVM was implicitly tested on the MNIST dataset for reasons that will become
clear later.

88
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of the best parameter values among C ∈ {1, 10, 100}, CU ∈ {0, 1, 10, 100}
and ε ∈ {0.01, 0.05, 0.1, 0.5} for the regularisation trade-offs C, CU and
the gap width of the ε-insensitive loss.

Cross validation is a technique for model selection where the dataset
is split into n parts. For a specific set of hyperparameters, the learning
algorithm is trained on n−1 parts and tested on the nth part. Repetition
for all n parts yields n test scores. This procedure is carried out for all
possible sets of hyperparameters. The one which achieves the best
average cross validation error is used for training the algorithm on the
complete training data.

All algorithms were offered CU = 0 as a possible choice during the Switching off the
Universum by set-
ting CU = 0 was
a possible choice
during model se-
lection.

model selection in order to be able to decide against using a Universum
by switching off its influence. If the model selection chooses CU = 0, the
impact of the loss on the Universum points on the optimisation problem
is zero. Therefore a U-SVM with CU is equivalent to a normal SVM. This
does not hold for the Uls-SVM. However, whenever CU = 0 was selected
for the Uls-SVM, just a simple least squares SVM was trained.

All the experiments were done exclusively with the RBF kernel k(x, y) =
exp

{
− ||x−y||2

2σ2

}
. Previous experiments showed that the kernel parame-

ter σ = 1167 yields good results. Therefore, this value was used in all
experiments on MNIST. Since k(z, z) = ||kz||2 = 1, the Uc-SVM constraint
|〈w, z〉 + b| ≤ ρ||z|| coincides with the constraint |〈w, z〉 + b| ≤ ρ of the U-
SVM. Therefore, the U-SVM and the Uc-SVM are equivalent in the RBF
case and only the results for the U-SVM are reported.

After performing a cross validation for each parameter tuple on each
of the ten splits for a specific size, the best tuple of each split was
used to train the algorithm on that split and compute the zero-one loss
on the 1, 272 test examples. By this procedure, ten error scores were
obtained for each split size, which were used to compute the standard
deviation and perform a T-test on a significance level of 5% in order to
check whether the mean error of an SVM (LS-SVM) was significantly
different from the mean error of a U-SVM (Uls-SVM).

Universa Three kinds of Universa were used in the experiment:

• The Universa U
(n)
3 consist of examples for the letter ”3” from the Universum U3:

Example patches
of digit three

MNIST training set. Here, n denotes the size of a single Univer-
sum. Similar to the assembly of the training set splits, ten disjoint
sets of Universa were sampled for each of the Universum sizes of
100, 200 and 500. The motivation for using character ”3” as Univer-
sum examples is the similarity of digit three to both digits eight
and five.In view of this resemblance, it seems reasonable to put
the three in between both classes, i.e. the area around the hyper-
plane. Furthermore, a Universum can confer information about
the support of the classes. Specifying a Universum means spec-
ifying where the classes should not be supported, because the
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optimiser will try to push the function down to zero in that area.
The classes five and eight clearly should have no support in re-
gions of high density of the other digits. But as a result of using
the RBF kernel, the resulting function decays with increasing Eu-
clidean distance to the training examples anyway. Therefore, it
is reasonable to merely use the digits that are close in Euclidean
distance to five and eight, which is again the class three.

• The Universa U
(n)
gen are motivated by the implementation and liter- Universum Ugen:

Artificially gen-
erated examples
that reflect the
empirical pixel
distribution of the
training dataset.

ally place the Universum examples between both classes. Since
the U-SVM tries to place the Universum points in the middle, the
U

(n)
gen Universa are generated such that its data points are expected

to be close to a separating hyperplane. Again, n indicates the
number of elements in the respective Universum. Unlike the Uni-
versa U

(n)
3 , the U

(n)
gen is artificially generated by the following proce-

dure: Each single pixel of each single Universum point is assigned
the value of a randomly drawn example from the split the Univer-
sum point is generated for. Figure 3.1 (left) shows an example of
such a Universum point. In this way the pixel distribution of the
resulting Universum point reflects the empirical pixel distribution
of its training split. This procedure is repeated n times for each
training split. It is important to use only the data points in the
respective training split to generate the Universum point. Other-
wise additional information from test points might be used, which
obstructs the statistical validity of the error scores. This means
that a Universum U

(n)
gen has to be generated anew for each different

training set, even for the training splits of the cross validation.

• The Universa U
(n)
mean take the motivation by the implementation to Universum

Umean: Averaged
examples of
opposite classes.

the extreme: To generate an element of U
(n)
mean, one element from

each class of the respective training set is sampled, and the two
digit patches are simply averaged. Figure 3.1 (right) shows an
example of such a Universum point.

Results and Discussion Tables 3.1, 3.2 and 3.3 show the mean Universum U3

augments the
classification
accuracy signifi-
cantly.

zero-one error scores for the Universa U
(n)
3 , U

(n)
gen and U

(n)
mean averaged

over the ten splits. In all experiments the loss decreases with the size
of the training set, and the SVM seems to perform equally well as the
LS-SVM. Figure 3.2 shows the error scores as a function of training set
size for an SVM and the U

(n)
3 -SVMs. In contrast to the U

(n)
3 -SVMs and

the U
(n)
3 -LS-SVMs, the average error for the SVMs and LS-SVMs us-

ing the artificially generated Universa U
(n)
gen and U

(n)
mean is not better than

their SVM counterparts’. In fact, the error scores even seem to get a lit-
tle worse with increasing Universum size. This means that the Univer-
sum seems helpful to the learning algorithm during the model selection
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Figure 3.1: Examples of Universum points for the Universa Ugen (left) and Umean

(right). The Ugen example is generated by using pixel values from randomly drawn train-

ing examples for each single pixel. The Umean example is the mean of two randomly

drawn training examples of opposite class.

SVM U-SVM

|L|\|U| 100 100 200 500

20 29.69± 13.61 29.06± 14.33 28.58± 14.86 28.51± 14.93

50 9.49± 2.84 8.82± 2.09 9.04± 2.19 8.88± 1.69

100 5.68± 0.83 5.42± 0.83 5.44± 1.02 5.31± 0.91

200 3.92± 0.53 3.54± 0.37 3.49± 0.39 3.28± 0.49

500 2.55± 0.26 2.32± 0.28 2.34± 0.20 2.24± 0.32

1000 1.93± 0.25 1.82± 0.25 1.78± 0.26 1.69± 0.21

LS-SVM Uls-SVM

|L|\|U| 100 100 200 500

20 32.11± 14.26 31.53± 15.00 30.44± 16.22 30.72± 15.89

50 9.19± 2.57 8.62± 2.01 8.13± 2.05 8.59± 2.03

100 5.61± 0.90 5.65± 0.93 5.55± 0.85 5.13± 0.86

200 3.72± 0.58 3.57± 0.64 3.41± 0.52 3.47± 0.53

500 2.44± 0.26 2.33± 0.30 2.30± 0.28 0.26± 0.33

1000 1.78± 0.17 1.68± 0.20 1.56± 0.13 1.61± 0.27

Table 3.1: Zero-one error scores in percent for five vs. eight classification on the

MNIST dataset for SVM, U-SVM, LS-SVM, Uls-SVM with Universa U
(n)
3 . The error scores

are averaged over the ten training splits. Each column has constant Universum size while

each row has constant training set size. Results that are significantly (5% significance

level) better than the performance of the same algorithm without using a Universum are

printed in bold font.
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stage, therefore making it choose CU > 0, but turns out to be harmful
for the test error. For SVMs and LS-SVMs using the U

(n)
3 Universa, the

performance is not worse in all cases. In some cases it is even signifi-
cantly better. The error scores for those cases, shown in table 3.1, are
printed in bold font. The uselessness of the artificially generated Uni-
versa U

(n)
gen and U

(n)
mean and the usefulness of the ”natural” Universa U

(n)
3

indicate that it is actually the additional information contained in U
(n)
3

which increases the algorithms’ performance. The Universa U
(n)
gen and

U
(n)
mean cannot add any additional information to the learning problem

since they are generated from the respective training sets. The only way
that artificially generating a Universum could prove to be useful for the
algorithm’s performance is by uncovering non-discriminative features
through the process that generates the Universum points. By forcing
the normal of the hyperplane learnt by the algorithm to be as orthogo-
nal as possible to those features, the learnt model would become more
invariant against them. But this does not seem to be the case here.

However, the invariance argument can be used to explain the pos- Success of U3: In-
variance against
natural transfor-
mations?

itive influence of U
(n)
3 on the classification performance. In high di-

mensional feature spaces, there are many ways to separate two classes
of digits. One major problem the learning algorithm faces, is to dis-
tinguish discriminative from non-discriminative features. Features in-
duced by frequently occurring transformations on the data, like small
rotations, translations, different widths of ink strokes etc., are clearly
non-discriminative. With increasing training set size, the learnt func-
tion gets more and more invariant against those transformations since
they are sufficiently represented in the examples. However, when the
training set is small, there might not be enough information to infer
the directions of invariance from the data.

There are two common methods that have been proposed to over- Relation of the
Universum to the
Virtual Support
Vector Method

come this problem and have been tested for digit recognition. These
methods are related to using a Universum consisting of other digits. In
order to make the classifier more robust against transformations from
a Lie group {Lt}, the data can be whitened with respect to the covari-
ance matrix of the tangent vectors C = Cov

(
{ ∂

∂t |t=0Ltxi}i=1,...,m

)
to the

transformation group at the data points [19, 12, 13]. This amounts
to rescaling the data points by the inverse square root of the eigen-
values of C in directions of their eigenvectors, thereby decreasing the
directions with large eigenvalues. Since the large eigenvalues of C are
associated with large variance of the transformation in that direction,
the influence of the transformation on the dot product is effectively
decreased.

Another method which applies to more general groups of transfor-
mations, is the use of additional examples that have been artificially
transformed by the transformations in question [88]. Although this
injects the relevant information about non-discriminative transforma-
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tions into the dataset, its possibly large size can slow down the learning
process. A solution introduced by [79, 19], which is especially suited
to SVMs, is the so called virtual support vector method. Here, an SVM
is first trained on the original dataset, yielding a set of support vec-
tors. Afterwards, the transformations [88] one wishes to be invariant
against are applied to the support vectors only, thereby producing new
data points. Then, the SVM is retrained on this new dataset. The vir-
tual support vector method uses the fact that an SVM trained on the
support vectors yields the same solution as when trained on the whole
dataset. Therefore it is sufficient to only transform the support vectors
in order to introduce the necessary information about the transforma-
tions.

One aspect both methods have in common, is that the transforma- Specifying implicit
invariance direc-
tions with a Uni-
versum

tion has to be known to make the classifier more robust against it.
This might be possible for obvious transformations which are easy to
parameterise, but impossible for more complex ones. In this case, a
Universum might help to specify the directions of invariance.

A linear function is most invariant against a transformation if the
transformation only changes the data point along the null space of the
function, because such a transformation will not change the value of
the function. This means that the normal vector that represents the
linear function has to be orthogonal to the range of the transformation.
This is also the idea behind the two methods described above. If, now,
the Universum points are afflicted with the same transformations as
the training points and those transformations constitute a major part
of the variance, then putting the Universum points close to the hyper-
plane will make the normal vector of the hyperplane more orthogonal
to the directions of major variance and therefore more invariant against
the transformations. In the case of digit classification, it is not unrea-
sonable to assume that the transformations on all digits are the same.
An additional set of digits can therefore provide information about the
directions of desired invariance. This could explain the better perfor-
mance of the U-SVMs and Uls-SVMs using U

(n)
3 .

3.2 Text classification

Dataset and experimental setting Another common domain for ma- The Reuters
dataset: New ar-
ticles of different
categories

chine learning algorithms is text classification. In order to test the dif-
ferent Universum implementations on that domain, the Reuters dataset
was chosen which was already used in [103]. The Reuters dataset con-
sists of more than 800,000 English news articles from the Reuters news
agency written between August 20, 1996 and August 19, 1997. In
the following experiments the version rcv1-v2 of [58] was used. The
Reuters dataset is hierarchically organised. Starting from four top
level categories, ECAT (Economics), GCAT (Government/ Social), MCAT
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SVM U-SVM

|L|\|U| 0 100 200 500

20 29.69± 13.61 29.64± 13.67 29.55± 13.78 29.25± 14.17

50 9.49± 2.84 8.56± 1.91 8.81± 1.98 8.88± 2.07

100 5.68± 0.83 5.77± 0.91 5.77± 0.91 5.72± 0.81

200 3.92± 0.53 3.96± 0.58 4.00± 0.59 4.14± 0.51

500 2.55± 0.26 2.80± 0.29 2.74± 0.33 2.84± 0.41

1000 1.93± 0.25 1.99± 0.24 2.18± 0.23 2.03± 0.35

LS-SVM Uls-SVM

|L|\|U| 0 100 200 500

20 32.11± 14.26 32.09± 14.29 32.13± 14.24 32.16± 14.19

50 9.19± 2.57 8.90± 2.38 9.04± 2.42 9.01± 2.28

100 5.61± 0.90 5.79± 0.95 5.80± 0.99 5.87± 0.96

200 3.72± 0.58 3.76± 0.60 3.79± 0.65 3.79± 0.68

500 2.44± 0.26 2.54± 0.36 2.61± 0.35 2.61± 0.34

1000 1.78± 0.17 1.74± 0.15 1.81± 0.19 1.81± 0.22

Table 3.2: Zero-one error scores in percent for five vs. eight classification on the

MNIST dataset for SVM, U-SVM, LS-SVM, Uls-SVM with Universa U
(n)
gen. The error scores

are averaged over the ten training splits. Each column has a constant Universum size

while each row has constant training set size.
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Figure 3.2: Zero-one loss as a function of training set size for five vs. eight classifica-

tion on the MNIST dataset using Universa U
(n)
3 .
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SVM U-SVM

|L|\|U| 0 100 200 500

20 29.69± 13.61 29.71± 13.59 30.53± 12.68 29.52± 13.83

50 9.49± 2.84 10.39± 2.98 11.72± 4.94 10.54± 3.05

100 5.68± 0.83 6.77± 2.17 6.55± 1.49 7.43.± 3.41

200 3.92± 0.53 4.03± 0.64 4.57± 1.57 4.13± 0.77

500 2.55± 0.26 2.72± 0.71 2.68± 0.44 2.55± 0.26

1000 1.93± 0.25 1.93± 0.25 1.93± 0.25 1.93± 0.25

LS-SVM Uls-SVM

|L|\|U| 0 100 200 500

20 32.11± 14.26 32.72± 13.69 32.09± 14.29 32.07± 14.36

50 9.19± 2.57 10.21± 3.51 9.80± 2.83 9.80± 2.74

100 5.61± 0.90 5.93± 1.86 5.98± 1.60 5.97± 1.52

200 3.72± 0.58 3.77± 0.62 4.72± 2.27 3.72± 0.58

500 2.44± 0.26 2.51± 0.27 2.44± 0.26 2.44± 0.26

1000 1.78± 0.17 1.78± 0.17 1.78± 0.17 1.78± 0.17

Table 3.3: Zero-one error scores in percent for five vs. eight classification on the MNIST

dataset for SVM, U-SVM, LS-SVM, Uls-SVM with Universa U
(n)
mean. The error scores are

averaged over the ten training splits. Each column has a constant Universum size while

each row has constant training set size.

(Markets) and CCAT (Corporate/ Industrial), the articles are sorted into
more specific categories which themselves are split into sub-categories.
This generates a tree of different thematic categories. If an article could
not be assigned to one of the finer categories, it was assigned to the
finest category possible. Therefore, not only the leaves of the tree con-
tain articles, but also intermediate nodes.

In the experiments the task was to separate the category C15 (Per-
formance), which is a sub-category of CCAT, against all other sub-
categories of CCAT. This led to a dataset of 13,310 examples (4,178
positive examples and 9,130 negative examples). Each example is rep-
resented as a so called Bag of Words, that is a histogram of word oc-
currences in the respective document for a dictionary of 47,237 words.
All histogram entries have been transformed by the so called TF.IDF Bag of Words

TF.IDF weighting:
Rescaled his-
tograms of word
occurrences

weighting scheme: In this scheme, the entry for the term t in docu-
ment d is given by xd(t) = (1 + loge n(t, d)) · loge

(
|D|
n(t)

)
, where n(t, d) is the

number of occurrences of t in d, n(t) is number of documents in the
whole corpus that contain t, and |D| is the total number of documents
in the corpus. The values of n(t) have been computed on the entire
Reuters dataset, in particular also on the test data and on other data
points used for Universa (see below). This use of the data provides ad-
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ditional information, but does not obstruct the statistical validity of the
error scores since only the documents and not the labels of the doc-
uments were used. After the transformation, the Bags of Words were
scaled to unit length.

As in the MNIST experiments, 10, 000 examples were used for train-
ing and model selection, while the remaining 3310 were used for testing.
Again, ten disjoint splits for each of the training set sizes 20, 50, 100,
200, 500 and 1000 were sampled from the training set. The model se-
lection for choosing the hyperparameters C, CU, ε and the RBF kernel
parameter σ was done analogously to that for the MNIST dataset. Pos-
sible values for σ were the 2−3, 2−2, ..., 23 multiples of the 1

2 -quantile of
the pairwise input space distances between the documents of the first
split of 1000 examples. This heuristic for choosing the correct range of
σ was suggested in [15]. Again, since this procedure does not use the
label information of the data points, these values can also be used for
splits of smaller size and are a statistically valid use of unlabelled data.

The testing procedure was the same as in the MNIST case.
Universa Two different Universa were used for the Reuters dataset:

a natural and an artificial one.

• The natural Universum UM14 consists of all 2540 examples from Universum UM14:
Examples from
the M14 category

the category M14 (Commodity markets), which is a sub-category
of MCAT. In contrast to the experiments with the MNIST dataset,
only one Universum size was used. This Universum is again mo-
tivated by the invariance argument. Since the subject of the M14
examples should be quite different to the subject of the CCAT
class, variations in the principle directions of M14 should not
change the outcome of the classifier on the CCAT examples.

• The artificial Universum UMoC was generated similar to the Umean Universum UMoC :
Mean of the clos-
est of ten ran-
domly drawn ex-
amples from op-
posite classes

Universum for digit recognition. In order to ensure that the gen-
erated examples lie in between the two labelled classes, ten ex-
amples were randomly drawn from each class, and the mean of
the two closest points in input space was used as a Universum
example. Since this procedure is likely to produce a lot of double
Universum examples, especially for small labelled sets, the Uni-
versum size was set to the size of the respective training set. This
has the additional advantage of keeping the relative influence of
the Universum in the optimisation’s objective constant.

Results and Discussion Tables 3.4 and 3.5 show the averaged zero- UM14 and UMoC

improve the
classification per-
formance; UM14

significantly, so.

one error scores. All U-SVMs and Uls-SVMs using Universum UM14

perform better for the training set sizes 20 and 50, some of them sig-
nificantly (T-test with significance level 5%). For smaller and larger
dataset sizes, the effect vanished. None of the Universum algorithms
that use the UMoC Universum performs significantly better. However,
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SVM U-SVM LS-SVM Uls-SVM
20 36.09± 11.58 35.54± 11.54 34.37± 12.31 35.72± 11.52
50 23.15± 6.40 15.97± 1.83 23.97± 6.44 16.08± 1.79
100 14.28± 2.26 13.03± 0.85 15.65± 3.14 13.05± 1.06
200 10.80± 1.22 11.33± 1.49 11.31± 1.39 11.53± 0.94
500 9.09± 0.63 9.18± 0.61 9.17± 0.53 9.32± 0.44
1000 7.97± 0.48 8.01± 0.46 8.16± 0.52 8.09± 0.56

Table 3.4: Zero-one prediction error for the UM14 Universum averaged over ten splits.

Significantly better results are printed in bold font.

there seems to be a slightly better performance again for the dataset
sizes 20 and 50. Figure 3.3 shows the dependency between the amount
of labelled data and the error scores for the SVM and the U-SVM with
UM14 and UMoC .

The reason why the Universum only improves the performance for Reasons for the
improvement with
UM14

intermediate dataset sizes might be that the Universum data is mis-
leading for smaller dataset sizes and does not add any further neces-
sary information for large dataset sizes. In the latter case, the algorithm
apparently has enough information in the training set to classify the la-
belled data correctly. For the intermediate sizes of 20 and 50 the UM14,
but also the UMoC Universum, improve the performance. The explana-
tion for the success of the UM14 Universum could be that its Bags of
Words contain a lot of words that are not discriminative for the classifi-
cation task on the labelled data. By forcing those examples to zero, the
U-SVM is forced to ignore those non-discriminative features.

The slightly better classification accuracy for the UMoC Universum Reasons for the
improvement with
UMoC

compared to SVMs yields some evidence against the hypothesis that
the additional information in the Universum set increases the algo-
rithm’s performance. In this case, however, it might be that the opera-
tion on the labelled examples in the input space uncovered some non-
discriminative features. Under certain circumstances, averaging two
examples of opposite classes could carve out the non-discriminative
features. Using the averaged examples as Universum points could then
diminish the relative importance of those features.

The results encourage to use Universum algorithms in text classifi-
cation, which is well suited for the Universum setup at the same time.
While labelling texts can be a tedious procedure, unlabelled texts from
totally different subjects are plentiful.
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Figure 3.3: Dependency between the size of the training set and the zero-one error

scores for an SVM and U-SVMs using Universum UM14 and UMoC . The training set size

is plotted on a log scale.

SVM U-SVM LS-SVM Uls-SVM
20 36.09± 11.58 36.09± 11.58 34.37± 12.31 34.21± 12.50
50 23.15± 6.40 20.76± 5.10 23.97± 6.44 23.60± 6.55
100 14.28± 2.26 13.95± 2.85 15.65± 3.14 15.22± 2.74
200 10.80± 1.22 10.82± 1.42 11.31± 1.39 10.86± 1.33
500 9.09± 0.63 8.91± 0.45 9.17± 0.53 9.51± 0.72
1000 7.97± 0.48 8.02± 0.28 8.16± 0.52 8.09± 0.64

Table 3.5: Zero-one prediction error for the UMoC Universum averaged over ten splits.

No significantly better results were found.
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3.3 Universum for Neural Applications

3.3.1 Brain Computer Interfaces (BCI)

Brain computer interfaces (BCI) are devices that allow a user to control A brain computer
interface is a
mapping from
brain activity,
recorded with
EEG, MEG, ECoG,
SCR, NIR or fMRI,
into R.

a computer by merely using his brain activity [52]. The user’s brain ac-
tivity is captured by electroencephalogaphic (EEG), magnetoencephalo-
graphic (MEG), eletrocorticographic (ECoG), or single cell recordings
(SCR) [94], or near-infrared (NIR) or functional magnetic resonance
imaging (fMRI) and interpreted by a computer system. The interpre-
tation of the computer can aim at different states, e.g. “yes” or ”no”, or
at a continuous signal, e.g. for controlling a cursor. Therefore, a BCI
implements a mapping from brain activity into either a discrete set of
states or the real numbers. This mapping can either be fixed a priori or
involve a learning algorithm. When using a fixed mapping, the user has
to learn how to control the BCI via his brain activity. This can involve
tedious training since intentionally controlling ones own brain activity
is clearly not a natural task for a human. In fact, not every person
can learn how to control his brain activity. This is the main motivation
for using machine learning algorithms for BCIs. In a training phase,
the user is asked to accomplish a certain task, while his brain activity
is recorded. This yields a set of labelled signals which is then used
to train a supervised learning algorithm. However, the mapping from
brain signals to control signals seems to change over time. Therefore,
a learnt mapping has only a certain lifetime. It is common practice to
use a learning algorithm in a starting phase in order to achieve a good
initial performance of the user and then fix the learnt mapping after
some time and put the need for adaption on the user’s side.

The main motivation for BCI research is to develop devices that allow BCIs allow
locked-in patients
to communicate.

completely paralysed patients to communicate. Examples for diseases
that can lead to complete paralysis are a stroke or amyotrophic lat-
eral sclerosis, which involves the degeneration of motor neurons in the
cortex and the spine. If there are no other physical means of communi-
cation for a patient, i.e. the patient is even unable to move the eyes or
eyelids, then his situation is referred to as locked-in syndrome. Design-
ing affordable, comfortably controllable BCIs with a high information
rate for locked-in patients is the ultimate goal of BCI research.

There are several components of a BCI that can be varied: Design decisions
in a BCI: neuro-
logical events,
recording tech-
nique, output
space and type of
mapping

• the type of neurological events to be detected to control the com-
puter system (motor related potentials, slow cortical potentials, ...)

• the recording technique (EEG, MEG, NIR, ...)

• the outputs (discrete, continuous)

• the mapping from the signal to the output space to be used (a
priori fixed or learned mapping).
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In some cases the decision for one component implies the decision for Events used
in this thesis:
Slow motor re-
lated potentials,
event-related
desynchronisa-
tion and tactile
evoked potentials

another, e.g. the decision for a neurological event discloses all the
imaging techniques, that cannot detect that event. The experiments
below involve data from EEG recordings of slow motor related potentials
and event-related desynchronisation (ERD) as well as data from tactile
stimulation using MEG.

Extracranial encephalography is the oldest technique to non-
invasively measure cerebral activity. It was invented by Hans Berger
at the University of Jena in Germany in 1929 and was first published
in 1938 [3]. In an EEG recording, up to a few hundred electrodes are Extracranial

encephalography:
EEG

placed on the subject’s head, to record changes of voltage potential
through the skull and the meninges. The recorded changes of voltage
potential are mainly due to the physiological activity of the cortex. In
contrast to other imaging techniques such as fMRI, EEG has a very
good temporal resolution in the order of tens of milliseconds. However,
due to the isolation properties of the skull and the tissue between the
brain and the electrodes, the spatial resolution is limited.

Magnetoencephalography is a non-invasive recording technique that Magnetoencephalography:
MEGmeasures the magnetic field induced by the electrical activity of cere-

bral neurons. Although it is possible to record data from sub-cortical
structures, MEG mainly captures data from the cortex. MEG can mea-
sure magnetic field fluctuations down to the order of 10−14 Tesla. Due
to this sensitivity, MEG scanners need to be installed in a magentically
shielded room to avoid disturbances from the earth’s magnetic field or
other objects in the near environment. Furthermore, the sensors must
be cooled, usually by a large liquid helium cooling unit. This eliminates
the MEG technology from the list of recording techniques for a BCI that
can be used in a patients daily life. However, it is argued [40] that MEG
is applicable for preliminary studies to search for stable signals that
can be used to build a BCI for a certain patient.

There are two fundamental types of stimuli used in BCIs: In en- Endogenous
versus exogenous
BCIs

dogenous BCIs, certain mental tasks like mentally rotating an object
or imagining movements, are performed by the subject to indicate a
certain state. In exogenous BCIs external stimuli are presented to the
patient who indicates the intended state by focusing his attention on
one or the other stimulus. The experiments presented below involve
both types. The datasets MPIMOV and BCICOMP consist of movement-
related potentials and event-related desynchronisation from imagined
movements recorded with an EEG and therefore belong to the domain
of endogenous BCIs. The FINGERS dataset contains MEG data recorded
from a exogenous BCI task using tactile stimulation of the fingers.

Data The machine learning experiments below involve data from
three experiments:

• The MPIMOV dataset consists of EEG recordings from an imag-
ined movement BCI paradigm. The experiment was conducted
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at the Max-Planck-Institute in Tübingen to examine the possibil-
ity of recording Universum data from a baseline condition. The
three tasks for the subjects were: imagining a movement of the
left hand, imagining a movement of the right hand, not imagining
a movement. The exact experimental setup is described below.
Imagined movement tasks use a well defined signal for control- MPIMOV: Motor-

related potentials
and event-related
desynchronisa-
tion recorded with
EEG at the Max-
Planck-Institute
in Tübingen

ling the BCI: When a person is neither moving nor about to move,
the motor cortex produces an electrical activity which is domi-
nated by rhythms in the 8-12Hz (α-band) and 18-22Hz (β-band)
frequency bands. Desynchronisation in the α-band is also known
to correlate with visual tasks [51]. This will become important
later when designing another Universum for this dataset. This
activity is called µ-activity or µ-rhythm. At the beginning of the
planning phase of a movement, about 1-1.5 seconds before the
movement is executed, the µ-rhythm gradually disappears. This
event is referred to as event-related desynchronisation (ERD) and
can be detected by EEG. Movement-related potentials (MRP) are
slow shifts in the electrical activity which also start 1-1.5 sec-
onds before the execution of a movement and become dominating
on the contralateral site a few hundred milliseconds before the
movement. Naturally, the best location to record this signal is the
area over the motor cortices. It is known that the MRP and ERD
can also be recorded when the movement is only imagined [67]
or attempted [47]. Unfortunately, not all persons show a motor-
related ERD. However, if an ERD is present, it can be detected
more or less reliably and is therefore used in many BCI studies (
e.g. [34, 52, 54, 53, 57, 4, 104, 30, 37]). Another advantage of
using ERD and MRP is the possibility to train subjects to control
their µ-activity and thereby improving the classification accuracy
[36]. One potential drawback of this BCI paradigm is the decreas-
ing quality of the signal due the long immobility of a real patient
leading to the degeneration of the pyramidal cells in the motor
cortex.

• The experiments for the BCICOMP dataset employed the same ba- BCICOMP: EEG
recordings of
motor-related
potentials and
event-related
desynchronisa-
tion from IDIAP
(Switzerland)

sic experimental paradigm as the experiments for the MPIMOV

dataset. The data was initially recorded by Jose del R. Millan
at IDIAP in Switzerland [63] and provided online as ”Data set
V <mental imagery, multi-class>” for the third BCI competition
hosted by the Fraunhofer Institute FIRST in Berlin. The exper-
iments involved three tasks: imagination of repetitive self-paced
left hand movements, imagination of repetitive self-paced right
hand movements and generation of words beginning with the same
random letter. The experiments below used only the first two con-
ditions as labelled data, while the third class served as a Univer-
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sum in one experiment. The description of the experimental setup
can be found online 2.

• The FINGERS dataset was recorded by Jeremy Hill in a study at FINGERS: Tactile
evoked potentials
recorded at the
MEG center in
Tübingen

the MEG scanner in Tübingen for an attention-based exogenous
BCI using tactile stimuli [74]:
In another attention related BCI paradigm, [41] employ a new ap-
proach based on auditory-evoked potentials (AEP). In the experi-
ments they presemt two constantly lasting auditory stimuli to the
subject, who was asked to indicate the desired state by focusing
his attention on one or the other. The data from those experiments
proved to be well classifiable after only two hours of recording.
Stimuli that are neither motor related nor visual, circumvent the
problems of a decaying signal due to complete immobility of the
patient and the resulting degeneration of motor neurons or immo-
bility of the eyes.
[74] investigates a variation of that paradigm, again based on the
modulation of attention to constant streams of stimulation by re-
placing the auditory by a tactile stimulus stream. One challenge
in BCI is to increase the possible bit rate of a BCI. This can either
be done by reducing the length of the time window that is used
to classify the signal from the patient, or by increasing the num-
ber of possible states. The number of possible stimuli streams
of the auditory approach is clearly limited since concentrating on
the different streams becomes harder as the number of different
stimuli increases. Another sensory modality that is not likely to
suffer from degeneration and allows for several streams of stim-
uli is tactile stimulation. For the FINGERS dataset, Hill used four
different streams of tactile stimuli at the thumb and little finger
on each of the subject’s hands. The subject indicates the desired
class by focusing his attention to the stimulus at a specific fin-
ger. Not focusing the attention on any finger was also used as a
condition. The FINGERS dataset therefore represents a five class
problem.
The exact experimental setup is described in [74].

Universa Depending on the dataset different kinds of Universa were
used:

• As in the experiments for the MNIST and the Reuters dataset, Umean Univer-
sum: Averaged
examples

Universa Umean of averaged examples are used for the experiments
on the MPIMOV and FINGERS datasets. 200 Universum points were
generated in exactly the same manner as for the MNIST dataset in
section 3.1. Hence, the number of Universum points was roughly
equal to the number of training points.

2http://ida.first.fraunhofer.de/projects/bci/competition_iii/desc_V.html
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• The Universa UC3 correspond to data from a third condition in the UC3 Universum:
Examples from a
third condition

EEG experiments. This third condition was different for the MPI-
MOV and the BCICOMP dataset.
The MPIMOV dataset was exclusively recorded in order to check UC3 for MPIMOV

whether Universum points recorded in a baseline condition can
augment the classification accuracy of the learning algorithm. In
this third condition the subject was asked to neither imagine a
movement nor to move. The motivation for this kind of Univer-
sum is that data recorded in this condition should not be dis-
criminative for the imagined movement task. By using a UC3 Uni-
versum, the classifier should become more robust against non-
discriminative patterns in the data.
The UC3 Universum for the BCICOMP dataset consists of the data UC3 for BCICOMP

points of the third condition in the experiments by [63]. In this
condition, the subject had to generate words starting with the
same random letter. Again, the idea behind using data from this
condition is that data from a task that is not related to the move-
ment of the hands should yield non-discriminative features the
classification algorithm should be invariant against.
The Universa UC3 denote the UC3 Universa that have been cen- UC3 Universa are

centered on the
average of the
class means

tered onto the point between the means of the two other classes.
As argued in 2.4.2, there is theoretical evidence that the covari-
ance structure of the Universum data contains useful information
for the Universum classifier. There, the covariance matrix of the
Universum serves as noise covariance. The noise mean was ex-
actly the mean of the class means. By centring the Universum
to that point, the noise as specified by the Universum has mean
zero.
There is also a more intuitive way to motivate this centring pro-
cedure: If only the covariance structure is important, a small dif-
ference between the mean of the Universum points and the point
between the two classes is desired. If the majority of Universum
points lie far apart from the labelled data, they will pull the hyper-
plane towards their center. This might impair the classification
performance of the learning algorithm. Especially linear SVMs
suffer from such kind of Universum. In the RBF case, Universa
that lie far apart do not hurt the classification performance since
the RBF function drops down to zero with increasing Euclidean
distance of the data points anyway. In this case, the distance in
feature space converges to

√
2 and thus has only constant influ-

ence. Since RBF kernels do not offer any advantage over linear
SVMs for BCI data [40], linear SVMs are used throughout the ex-
periments below and centring the Universum on the training data
might be helpful.

• The Universa Unm used for the experiment with MPIMOV and BCI-
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COMP are motivated by physiological considerations. As described
above, event-related desynchronisation (ERD) represents a decline
in the frequency α-band. However, desynchronisation in the α-
band is also related to vision [51]. Since the ERD is due to imag-
ined movement, the main source of information should be approx-
imately over the motor cortices which are located in the region
around the central sulcus. Information coming from the vision
areas which are located at the caudal area of the brain should not
be useful and therefore not be considered by the classification al-
gorithm.
In almost all BCI applications, heavy preprocessing proves to be Unm Universa:

Independent
components with
a strong activity
over the visual
cortex

crucial for classification performance. One preprocessing step is
to run an independent component analysis (ICA) on the EEG data.
ICA estimates a set of independent components {s1, ..., sn} from
a set of n mixed sources {x1, ...,xn}, i.e. EEG channels for BCI.
When training the learning algorithm, the projections onto the in-
dependent components are used. [40] use a method that displays
the relative influence of each EEG channel on the single indepen-
dent components, i.e. the training features: If X denotes a ma-
trix with the recordings form the different channels as row vectors
and S a matrix with independent components as row vectors, then
the relation between the data points and the independent compo-
nents is given by X = WS, where W is a s × s matrix called the
mixing matrix. If W has full rank, the relation can also be writ-
ten as W−1X = S. This matrix product can also be written as a
sum of outer products between the data points and the columns
of the matrix W−1. Therefore, the single entries of each row give
a measure for the relative influence of this EEG-channel on the
respective independent component. By plotting the columns of
W−1, the influence of the single channels can be visualised. Fig-
ure 3.4 shows this visualisation for the first subject of the BCI-
COMP dataset.
The elements of the Unm Universa can now be generated by the
following procedure. Independent components that have a strong
influence from channels over the motor cortices are selected and
the corresponding features in the projected training data are set
to zero. By this procedure, the Universum points live in the sub-
space spanned by the independent components that are likely not
to be relevant for the discrimination task. Since training an SVM
with a Universum roughly corresponds to removing the Univer-
sum data from the space of possible solutions (see section 2.4),
using the Unm Universum tells the SVM to avoid solutions from the
subspace of non-discriminative independent components. Com-
pared to just ignoring the presumably non-discriminative inde-
pendent components, the learning algorithm can actually decide
to use those dimensions. However, it is discouraged to do so.
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Since the independent components are also only estimated from
data, using this Universum could account for estimation errors
made by the ICA.

• As mentioned above, the FINGERS dataset has 5 different classes of Universa for
FINGERS: All
classes which are
currently not used
in a subproblem
for multiclass
classification

data points. The different approaches for multiclass classification
with binary classifiers have already been described in 2.2.1.3. De-
pending on the coding scheme for multiclass classification, there
are classes that are not used as labelled data in a specific sub-
problem. In this case, it seems natural to use this data as Uni-
versum instead of simply ignoring it since this should increase
the contrast in the outputs of the single classifiers and therefore
make the output code words easier to decode. This was done for
the experiments on the FINGERS dataset.

Experimental setup for MPIMOV In the experiments for the MPI
EEG data, data from three male healthy subjects (referred to as JH,
JL and FS in the sequel) was recorded using 40 silver chloride elec-
trodes (see figure 3.5). The overall setup of the experiment followed
[52]. The reference electrodes were placed at the positions TP9 and TP10
as shown in figure 3.5. The electrodes FP2 and EO2 were used to record
possible artifacts from eye movements or eye blinks. The electrode H2
was attached to the subject’s hand in order to monitor whether the sub-
ject was unintentionally moving his hand. Before sampling the data at
256Hz, an analog bandpass filter with cutoff frequencies 0.1Hz and 40Hz
was applied.

The subjects were seated in an armchair at 1m distance in front of Top-down dataset
organisation: ses-
sion, run, trial

a computer screen which showed cues that indicated the three states
”left hand movement”, ”right hand movement” and ”no movement”. One
experiment session was divided into several runs, each of which cov-
ered 60 trials. After each run there was a pause of about five to fifteen
minutes. The total length of each trial was 9 seconds. Between the sin-
gle trials inter-trial intervals with a random length between 2-4 seconds
were added in order to give the subject time to relax.

The 9 seconds of a single trial encompassed different phases: In a
starting phase of 2 seconds, only the blank screen was shown to the
subject. At second 2, a fixation cross was displayed in the center of
the screen and an auditory stimulus indicated the start of a new trial.
The subject was instructed to fixate the cross for the complete time Organisation of

a single trial:
blank screen,
fixation cross
onset, auditory
signal, cue onset,
cue offset and
random pause

interval for which it was visible. At second 3, a cue was displayed for 0.5
seconds. The cue could be either an arrow pointing to the side, asking
the subject to imagine the hand movement, or a box indicating that
the subject should not imagine a movement. The subject performed
the task for that trial until the fixation cross disappeared at second 9.
Figure 3.6 schematically displays the time course of a trial.

No outlier detection was performed during the experiments and also
no data point was removed after it.
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Figure 3.4: Visualsation of the relative influence of the different BCI channels on the

different independent components. Bright colors indicate a strong positive (yellow) or a

strong negative (blue) influence. The plots display the values of the different columns of

the inverse mixing matrix obtained by ICA.
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Data used for analysis

Figure 3.6: Time course of a single trial for the MPIMOV experiment. Each trial lasted

9 seconds. Starting from second 0, a fixation cross was displayed between second 2 to

9. At second 3 the cue which indicated the subject’s task, was shown for 0.5 seconds.

Between second 9 and the start of a new trial, a period of random length between 2 and

4 seconds was added for relaxation.

Data preprocessing
For the MPIMOV recordings, a time window of 500ms after cue offset Preprocessing for

EEG data: extrac-
tion of a time win-
dow, low pass fil-
tering, linear de-
trending, spatial
filtering with ICA
and power spec-
tral density com-
putation

was extracted for each trial in order to avoid cue related signals in
further processing stages. The time series of each sensor and each trial
was low-pass-filtered by a zero-phase-distortion method with a smooth
falloff between 45 and 50 Hz and downsampled to 100Hz. Afterwards, the
data was linearly detrended, i.e. a linear model was fitted to the data
and subtracted from it. Since the signals from the cortex get blurred
by the layers of bone and tissue between the brain and the electrodes,
a spatial filter was applied to the data.

A spatial filter is a matrix W ∈ Rr×s that maps s time series of length
t to r time series of length t. If X ∈ Rs×t denotes the input patterns,
spatially filtering corresponds to a premultiplication of W. In order to
estimate W, an independent component analysis (ICA) was performed
on the concatenated time series of m trials for s sensors. ICA is an al-
gorithm that estimates W by maximising the statistical independence
of the resulting r outputs measured to some criterion. For the experi-
ments in this thesis, an infomax ICA [2], as implemented in [20], was
used. Infomax ICA maximises the mutual information [18] between the
inputs X and the outputs WX with respect to W. Due to the high com-
putational cost of Infomax ICA, W was estimated on the entire dataset
and not separately on each of the respective training splits. However,
as in the cases above, ICA does not use label information and there-
fore, this procedure can be seen as using additional information from
unlabelled data which does not obstruct the test results. The final data
representation was obtained by estimating the power spectral density
(PSD) of WX with Welch’s method [102] using 5 windows. Preprocessing for

MEG data: extrac-
tion of a time win-
dow, band pass
filtering and spa-
tial filtering with
ICA

The BCICOMP dataset was preprocessed in exactly the same way.
The time series of the FINGERS dataset was band-pass-filtered with

a zero-phase-distortion method with a smooth falloff between 0.1Hz and
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1Hz, and 5Hz and 6Hz, and downsampled to 12.4378 Hz. For the MEG
data, only a spatial filter computed by an Infomax ICA was additionally
applied.

Machine learning experiments For the MPIMOV and the BCICOMP Two nested
cross-validations:
An inner loop for
model selection
and an outer loop
for testing.

dataset, the whole dataset was split into ten splits. For each of these
splits, a model selection was performed on the remaining nine splits
by a ten fold cross validation in order to choose the best hyperparame-
ters among C ∈ {1, 10, 100}, CU ∈ {0, 1, 10, 100} and ε ∈ {0.01, 0.05, 0.1, 0.5}.
Since non-linear kernels do not lead to better results than linear ker-
nels k(x,x′) = 〈x,x′〉 on BCI data [40], the latter was applied thoughout
all experiments. After model selection, the algorithm was trained on
the nine splits with the best set of hyperparameters from cross vali-
dation and tested on the single split. This procedure was carried out
for all ten splits, yielding ten test error scores for each algorithm, each
Universum and each dataset.

Following the decoding approach for multiclass learning (see section Multiclass sub-
problems for
Fingers: (i) is
there a finger?,
(ii) left or right
hand?, (iii) thumb
or little finger on
the left hand?,
thumb or little
finger on the right
hand?

2.2.1.3), a decoding matrix M was designed for the five classes of the
FINGERS dataset. Equation (3.1) shows M. The rows correspond to the
classes ”no finger”, ”left little finger”, ”left thumb”, ”right thumb” and
”right little finger”. The columns correspond to the different classifica-
tion problems. Mij therefore denotes the label for the class i in sub-
problem j. A zero indicates that the corresponding class was used as
Universum in this subproblem. For assigning the class memberships
to the test points, L1 and Hamming decoding as well as loss based de-
coding for Hinge loss, shortly called ”Hinge decoding”, was used (see
section 2.2.1.3 for the decoding strategies).

M =


1 0 0 0
−1 1 1 0
−1 1 −1 0
−1 −1 0 1
−1 −1 0 −1

 (3.1)

The model selection and training were the same as for the other
datasets, except that the whole dataset was divided into fifty instead of
ten splits. For the model selection 10−1, 100, ..., 102 multiples of the in-
verse empirical variance of the data in kernel space 1

1
m

Pm

i=1k(xi,xj)− 1
m2
Pm

i,j=1 k(xi,xj)

were used as possible values of C and CU. This heuristic has been pro-
posed in [15]. Additionally, CU could be chosen to be zero during the
model selection in order to allow the algorithm to switch off the Univer-
sum.

Results and Discussion Tables 3.6, 3.7 and 3.8 show the mean No significant im-
provements, Unm

and UC3 seem to
help for subjects
JH and S2

zero-one loss for the datasets MPIMOV, BCICOMP and FINGERS for dif-
ferent Universa. Each error score is the mean over ten (fifty for FIN-
GERS) single error values.

On the MPIMOV dataset, there is no improvement in the error scores
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MPIMOV

FS JH JL
SVM 40.00± 7.70 40.00± 11.32 30.00± 15.54

U-SVM UC3 41.33± 7.06 34.58± 9.22 30.56± 17.22
UC3 39.33± 7.67 35.42± 9.67 30.00± 16.40

Umean 40.00± 7.70 42.92± 11.29 28.33± 15.37
Unm 39.67± 8.23 37.08± 11.69 30.00± 16.40
Unm 40.33± 6.37 37.50± 12.88 29.44± 16.15

Uls-SVM 41.00± 7.04 40.42± 11.96 30.56± 15.77
UC3 40.67± 7.04 37.08± 7.20 31.11± 17.01
UC3 40.67± 6.81 37.08± 7.47 30.56± 15.55

Umean 41.67± 7.90 40.00± 9.66 30.56± 15.77
Unm 40.67± 6.81 37.92± 12.65 30.00± 15.54
Unm 40.00± 6.85 36.67± 11.59 30.00± 15.54

Uc-SVM UC3 40.00± 7.70 40.00± 11.32 30.00± 15.54
UC3 40.00± 7.70 40.00± 11.32 30.00± 15.54

Umean 40.00± 7.70 40.00± 11.32 30.00± 15.54
Unm 40.00± 7.70 40.00± 11.32 30.00± 15.54
Unm 40.00± 7.70 40.00± 11.32 30.00± 15.54

Table 3.6: Mean zero-one test error scores for the MPIMOV dataset for different Uni-

versa. The mean was taken over ten single error scores. No significant difference in the

error scores could be found (T-test significance level 5%).

for the subjects FS and JL compared to an SVM without Universum.
For subject JH the UC3 and Unm and their centered versions yield an
improvement of approximately 5% for the U-SVM and 3% for the Uls-
SVM. However, the variance is very high and the differences are not
significant. The Uls-SVM performs worse than the U-SVM in almost
all cases. The Uc-SVM does not give any improvement compared to an
SVM. In fact, the mean error scores and the variance are exactly the
same, indicating that CU = 0 was chosen by the model selection.

On the BCICOMP dataset, only improvements for subject S2 could
be obtained. The best improvement of approx. 8% was for Universum
Unm using a U-SVM. A minor decrease in the errors of about 3% could
be obtained with the Universum UC3, again using a U-SVM. However,
the difference is not significant. As already observed for the MPIMOV

dataset, the Uls-SVM performs constantly worse than its hinge loss
counterpart. The Uc-SVM yields exactly the same results as a normal
SVM.

On both datasets, the Umean-Universum does not yield any improve- Umean does not
increase the ac-
curacy on almost
any dataset

ment in almost all cases. In fact, some error scores for the BCICOMP
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BCICOMP

S1 S2 S3
SVM 12.35± 6.82 35.29± 13.30 35.26± 14.05

U-SVM UC3 13.53± 6.83 32.94± 11.83 35.26± 14.05
UC3 14.12± 6.90 32.35± 10.83 35.79± 13.77

Umean 14.12± 7.94 30.59± 14.88 35.79± 14.42
Unm 12.35± 7.04 27.65± 14.15 36.84± 13.81
Unm 12.94± 6.68 27.65± 15.70 35.79± 13.77

Uls-SVM 13.53± 8.34 33.53± 13.60 34.21± 12.47
UC3 12.94± 6.68 32.35± 10.83 35.79± 15.25
UC3 14.71± 7.96 33.53± 11.11 35.79± 15.25

Umean 17.65± 10.74 33.53± 13.60 34.21± 12.47
Unm 16.47± 7.74 31.18± 13.02 35.79± 15.25
Unm 13.53± 8.34 33.53± 13.88 35.79± 15.25

Uc-SVM UC3 12.35± 7.04 35.29± 13.30 35.26± 14.05
UC3 12.35± 7.04 35.29± 13.30 35.26± 14.05

Umean 12.35± 7.04 35.29± 13.30 35.26± 14.05
Unm 12.35± 7.04 35.29± 13.30 35.26± 14.05
Unm 12.35± 7.04 35.29± 13.30 35.26± 14.05

Table 3.7: Mean zero-one test error scores for the BCICOMP dataset for different

Universa. The mean was taken over ten single error scores. No significant difference in

the error scores could be found (T-test significance level 5%).

data are even worse. As for the MNIST dataset, this might be taken
as an indication for the hypothesis that the additional information and
not a changed feature representation helps to improve the accuracy.

On the FINGERS dataset, there is no significant improvement of U-
SVM for multiclass over standard SVMs. Although the error score for U-
SVMs are constantly about 1% better for H1 decoding compared to other
decoding schemes, the best error scores are obtained for L1-decoding,
for which the effect of using a U-SVM vanishes. Also, centring does not
lead to any significant improvement.

The high variance in the test results in all experiments is due to
the small amount of training data. In all cases, the model selection
for each split of the data had to be performed on a very small dataset
compared to the complexity of the signal. Therefore, it can happen
that the algorithm picks up misleading spurious patterns during model
selection which results in a high variance in the selected parameters
and in a high variance of the error scores. This is also the reason why
an SVM with a Universum can yield worse error scores than a standard
SVM, even if it is offered to switch off the Universum by setting CU = 0.
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Subject SVM U-SVM

H1-Decoding Hamming L1-Distance H1-Decoding Hamming L1-Distance

FB 42.73± 5.49 39.73 ± 5.79 36.77 ± 6.46 41.67 ± 4.93 39.10± 5.16 36.27 ± 6.44

SH 41.40± 8.11 38.80± 6.43 37.56 ±8.52 40.60± 7.68 38.60± 6.16 37.92 ±7.95

JF 52.32± 6.21 50.04±6.96 45.08± 6.51 51.16±6.57 49.48± 7.10 45.08 ±6.29

SVM U-SVM

FB 42.07 ± 5.77 39.73 ± 5.79 36.67 ± 6.06 40.83 ± 5.67 38.30 ± 5.73 35.57 ± 6.79

SH 41.88 ± 8.40 38.80 ± 6.43 37.08 ± 7.65 39.72 ± 7.54 37.32 ± 5.89 37.08 ± 7.65

JF 52.20 ± 6.67 50.04 ± 6.96 45.12 ± 6.71 49.80 ± 6.57 50.04 ± 6.96 44.12 ± 6.73

Table 3.8: Mean zero-one loss for the FINGERS dataset using different Universa. Only

the U-SVM algorithm was used. The mean was taken over 50 single error scores.

During the model selection CU > 0 might seem to be a good choice for
the algorithm but turns out to be a bad decision in the testing stage.

The better performance of the Unm Universum on the subjects JH Possible explana-
tions for the im-
proved accuracy
using Unm and
UC3

and S2 indicates that additional information about the usefulness of
features might in fact help to increase the accuracy of the classifier.
The regularisation constant CU for the Universum points was chosen
C = CU = 0.1 in both cases. This means that the non-orthogonality of w
on the Universum points was only weakly penalised, but had equal pri-
ority to classifying the labelled examples correctly. In fact, the relative
influence of the Universum points on the objective function was even
greater than the one of the labelled examples because there were more
Universum than labelled points. This could indicate that the spatial
filtering is not perfect and discriminative information might be spread
over several independent components, even over those that are mainly
non-discriminative. This is not surprising since for an unsupervised
method like ICA there is no possibility of knowing which feature might
be important for classification. Using the Unm Universum and therefore
gently penalising the use of these non-discriminative features can help
to improve the classification accuracy, although the factual usefulness
varies with the actual subject.

Interestingly, the subjects where the Unm Universum yields an im-
provement are exactly the ones where the UC3 Universum helps as well.
At the same time, those subjects are not the best performing subjects.
It might be that the bad accuracy of an SVM on those subjects is due
to other neurological signals that mask the discriminative ones dur-
ing preprocessing and training of a normal SVM. By specifying desired
directions of invariance with a set of Universum points, it could hap-
pen that the real signal is enhanced possibly leading to an increased
classification accuracy.

The slight improvement for the FINGERS dataset could also be ex-
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plained by the specification of invariant directions. By using the re- Possible explana-
tions for the slight
improvement in
the multiclass
classification
task

maining classes of a multiclass subproblem as Universum points, the
single subproblems become more independent, because in the case of
perfect orthogonality varying the output of one feature or ”bit” would
not change the value of any other. Thus, all other classifiers are un-
affected if a single classifier, i.e. bit, picks up a wrong pattern. This
might be beneficial for decoding a code word in the testing stage by
making it more robust against classification errors in single bits.

In summary, the most promising results were obtained by using the
Universa UC3 and Unm for a imagined movement paradigm. Although
none of the error scores was significantly better, the largest improve-
ments in accuracy could be obtained by SVMs using those Universa.
For larger training datasets this trends might even become significant.
Since those Universa are easy to obtain, their employment in an imag-
ined movement task it seems worthwhile trying.

3.3.2 Stimulus Reconstruction from Spikes

Any sensory information captured by the various sensors of the hu- Decoding the neu-
ral code: The ho-
munculus in the
brain

man body is converted into neural activity and transmitted to the cen-
tral nervous system via sequences of action potentials or spikes. One
major question in neuroscience is to understand how the nervous sys-
tem encodes information. [75] describe the task of understanding the
neural code as taking the perspective of a homunculus sitting in the
brain, whose only information about the outside world are sequences
of spikes transmitted to the brain from the body’s sensory system. Un-
derstanding the neural signals and what they mean to the organism,
effectively means decoding the neural code.

Usually, the relation between real world sensory information and Why stimulus re-
construction from
spikes?

neural activity is explored via neurophysiological experiments, in which
stimuli are presented to an animal while the activity of selected neurons
is recorded. Given the neural activity in response to a certain stimulus,
various methods can be used to analyse the neural responses in order
to understand the underlying code. One such method is trying to re-
construct the stimulus from the neural signals. Two kinds of insights
can be derived from this method [25]: Firstly, it is possible to examine
hypotheses about the neural encoding of the signals used in the exper-
iment. The accuracy of a reconstruction method is a measure of the
validity of the assumptions this method is based upon. However, it is
impossible to show the sufficiency or the necessity of a certain assump-
tion. All that can be gained is evidence for one or another hypothesis.
Secondly, the achieved accuracy of the reconstruction method can in-
directly serve as a lower bound on the amount of information that is
contained in the spike trains. If the method can reconstruct the stim-
ulus perfectly, then all the necessary information about the stimulus
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must necessarily be conveyed by the recorded neural activity.
The experiments below are based on [25, 26], who apply various Why use a Univer-

sum to do stimu-
lus reconstruction
from spikes?

machine learning methods to reconstruct the angle of a sine grating
shown to a behaving macaque monkey from the spiking activity of 20
complex cells of the visual cortex. Seven different stimuli were used,
leading to a seven class problem. If a U-SVM can achieve a better
accuracy with the multiclass approaches described above, the implicit
lower bound on the information contained in the data is decreased
and gives evidence for the assumption that the signals for the different
stimuli are independent in the employed feature representation, but
not picked up by a normal SVM.

Data The dataset used in the machine learning experiments below Data: Spiking
activity from 20
complex cells
stimulated with
sine gratings of
eight different
orientations

has been recorded at the Neurophysiology department (Dept. Logo-
thetis) of the Max-Planck-Institute for Biological Cybernetics, Tübin-
gen, by Andreas Tolias and coworkers. An awake, behaving monkey
(Macaca Mulatta), trained to fixate a small spot on the screen, was
shown gratings of eight different orientations (0◦, 22.5◦, 45◦, 67.5◦, 90◦,
112.5◦, 135◦, 157.5◦) with a contrast of 30%. Simultaneously, the neural
activities of a population of 20 complex cells in the primary visual cor-
tex (V1) were recorded. The location of the stimuli on the screen was
chosen to cover the receptive field of the neurons. Figure 3.7 shows
sine wave gratings as used in the experiments. Each single stimulus
was presented for 500ms. Each stimulus was shown exactly 30 times,
but in randomised order. Therefore, the whole dataset contained 240
examples. The spikes were recorded extracellularly with tetrodes and
sampled at 32kHz, high-pass-filtered and thresholded. The signals from
different neurons recorded by the same tetrode were separated by spike
sorting [31]. The final data representation was a discretised time se-
ries, where the single entries indicated the number of spikes in the
respective bin.

Figure 3.8 shows 30 trials from one of the neurons. The considered Data repre-
sentation: Bin
spikes into 10
non-overlapping
time windows
of length 80ms
to account for
rate coding
and temporal
correlation

time window had a total length of 800ms. For the plot, a bin size of
1ms was used in the data representation. Due to the refractory period
of an action potential, there can be at most one spike in each bin. For
the experiments below a much coarser binning was used, dividing each
trial into 10 bins. The reason for such a coarse discretisation can be
seen from figure 3.8: When looking at the spiking activity, an increase
in the firing rate of the neuron approximately 75ms after stimulus onset
can be seen. Furthermore, the spike rate differs depending on the
orientation of the presented stimulus. This suggests that the stimulus’
orientation is encoded by the spike rate and is therefore an example of
rate coding. If the bin size was chosen too small, the spike rate would
not be captured by the learning algorithm. Apart from the spike rate,
a typical temporal pattern can be observed between 250ms and 400ms,
which also seems to depend on the stimulus presented. This suggests
that the temporal correlation of spike times carries information about
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Angle = 0.0 o Angle = 22.5 o Angle = 45.0 o Angle = 67.5 o

Angle = 90.0 o Angle = 112.5 o Angle = 135.0 o Angle = 157.5 o

Figure 3.7: Examples of sine wave gratings as used in the recordings from complex

cells by Andreas Tolias and coworkers (courtesy of Jan Eichhorn [25]).

the stimulus. This strategy of encoding information is referred to as
temporal coding. If only the spike count over the whole 800ms was
used, the information about the temporal correlation would be lost.
According to [25], a bin size of 80ms seems to be a good choice.

Universum Since eight different orientations of gratings were used, Use remaining
classes in an
one-versus-
one decoding
approach for
multiclass clas-
sification as
Universum

the reconstruction problem is an eight class problem. As for the FIN-
GERS dataset, the decoding approach to multiclass is used. For the
neural data, a one-versus-one encoding matrix was employed, i.e. each
possible pair of binary classifiers for eight classes was trained, while
the remaining examples were used as Universum. Therefore, the en-
coding matrix is a 8× 8·7

2 matrix. An example of an encoding matrix for
the one-versus-one approach for four classes has already been given in
2.2.1.3.

Kernels Three different kernels were employed in the experiments Three kernels:
RBF kernel,
homogeneous
spikernel and
alignment kernel

below: the RBF kernel k(x,x′) = exp
(
− ||x−x′||2

2σ2

)
, a common kernel used

for dozens of applications, and two kernels that are especially tailored
to acting on spike trains [25, 26].

The first one is the so called homogeneous spikernel [26], which is
an improvement of the original spikernel [87]. This kernel is designed
to even work with sequences of different length and its computation
is not as easy as for the RBF kernel. The kernel can conceptually be Homogeneous

spikernel: Dot
production in the
space of all possi-
ble subsequences
of a given length

computed in three steps: In the first step, a sequence s of spike rates is
mapped to a function Ψs(·) on Rn. In the next step, the L2 dot product
kn(s, t) :=

∫
Rn Ψs(u)Ψt(u)du between two such functions is computed.

The elements u ∈ Rn represent subsequences of a fixed length n. The fi-
nal kernel is computed by a weighted sum over all different lengths of u
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Figure 3.8: Neural activity of a complex cell in the primary visual cortex of a macaque

monkey for two different orientations of sine gratings. The figure shows the recorded

spiking activity in an 800ms window. The graph in the bottom indicates stimulus on-

and offset (courtesy of Jan Eichhorn).

up to a maximum length N : k(s, t) =
∑N

n=1 pnkn(s, t), where the weight-
ing factor p becomes a kernel parameter. In practice, it is not necessary
to compute the integrals explicitly. Instead, a dynamic program can be
used to obtain the value of k(s, t). Since the dynamic program does not
provide any further insight, only the theoretical construction is shown
here. The dynamic program can be found in [87, 25, 26].

The function a sequence s is mapped to (the so called feature map)
is given by

Ψs : s 7→ Ψs(u) = C
n
2

∑
i∈In,|s|

µd(si,u)λin−i1 ,

where In,|s| is the set of ordered n-tuples i = (i1, ..., in) of indices i1 <
i2 < ... < in ∈ {1, ..., |s|}. C denotes a normalisation constant and µ, λ ∈
[0, 1] are parameters of the kernel. d denotes a distance measure on
Rn. For a certain u, Ψs(u) yields a mean similarity value between u
and all possible, not necessarily contiguous, subsequences si of s. The
similarity is measured by µd(si,u). Since 0 ≤ µ ≤ 1 the influence of a
u that is not similar to any subsequence of s becomes very low. The
additional factor λin−i1 decreases the influence of subsequences that
are spread out over the whole sequence since in − i1 can be seen as
a measure of how many elements between i1 and in are not covered
by other indices in i. Therefore, Ψs favors contiguous subsequences
since the elements of a pattern are expected to be close in time. When
calculating the integral kn(s, t) :=

∫
Rn Ψs(u)Ψt(u)du for two functions Ψs

and Ψt of two sequences s and t, the values of Ψs(u) and Ψt(u) are
compared for each possible u. If Ψs(u) and Ψt(u) have large values
for the same u, kn(s, t) will have a large value as well and therefore
indicate a strong similarity. However, if Ψs(u) has large values where



CHAPTER 3. APPLICATIONS AND EXPERIMENTS 117

Ψt(u) has small ones, kn(s, t) will be small as well since Ψs(u) and Ψt(u) The homogeneous
spikernel can
catch rate coded
stimuli as well as
temporal correla-
tion of the binned
spikes.

dampen each other in the multiplication. Therefore, kn(s, t) will indicate
a low similarity. The same holds for the sum k(s, t) =

∑N
n=1 pnkn(s, t)

for the final kernel. If many kn(s, t) contribute a large value, the final
kernel value will be large as well. Since there many more possible
subsequences for larger n, the contribution of the single kn has to be
weighted appropriately. This is done by pn. Choosing 0 < p < 1, the
influence of large subsequence length will be down-weighted. k(s, t)
is a valid kernel since the single kn(s, t) are valid dot products (and
therefore positive definite) and kernels are closed under addition.

When using the homogeneous spikernel on a population of neurons, The homogeneous
spikernel can be
used on several
spike trains from
a population of
neurons.

the computation of the kernel is a little more involved. However, there
is no principal difference. For a population of M neurons, a specific
subsequence si becomes an M × n matrix Si of firing rates. Each sin-
gle position of Si contains the firing rates of the population for a bin
corresponding to a certain time window in all simultaneously recorded
sequences. u becomes an M×n matrix as well, and thus the integration
is carried out over RM×n instead of Rn.

The other spike kernel that was employed in the experiments makes The global align-
ment kernel:
Linear kernel on
global alignment
scores

use of alignments. Alignments are a popular measure in bioinformat-
ics for comparing gene or protein sequences. Given two sequences s
and t, aligning them means searching for the cheapest sequence of
operations that transforms t into s or vice versa. Each use of an oper-
ation is associated with a certain cost. The total cost of transforming
s into t is then the sum of the single costs. Common operations are
deletion, insertion and substitution. Searching for this cheapest set of
operations can be cast into a shortest path problem on a graph with
(|s|+ 1) · (|t|+ 1) nodes as shown in figure 3.9. Each edge in that graph
corresponds to a single operation. When using the cost of the oper- A global align-

ment can be
efficiently com-
puted by solving
a shortest path
problem.

ation as edge weight, the shortest path, i.e. the path with minimum
total weight, yields the best set of operations to transform s into t and
vice versa. The shortest path problem can be solved efficiently, e.g.
with the Dijkstra Algorithm [17]. A dynamic program, especially for
computing the alignment score, is given in [23]. The global alignment
kernel for spikes is then computed as follows: First the minimal cost
for transforming one sequence of spike rates into another is computed.
Unfortunately, the pairwise alignment scores do not form a valid posi-
tive definite kernel. In order to transform the scores into a kernel, the
alignment scores of one example with all other training and Universum
examples are computed and serve as feature vector. This feature vector
is then simply combined with a linear kernel k(x,x′) = 〈x,x′〉. In order
to use the global alignment kernel for a population of neurons, the lin-
ear kernels on the alignment scores of the single neurons are summed
up, i.e. k({x1, ...,xM}, {x′1, ...,x′M}) =

∑M
i=1〈xi,x′i〉.

Machine Learning Experiments As in the BCI experiments, the
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Figure 3.9: Global alignment of two example sequences r = ’BAACB’ and q = ’CACA’.

Each path from the start-node to the end-node corresponds to an alignment. Horizon-

tal and vertical edges in the graph denote insertions of a gap into q or r, respectively.

Diagonal edges correspond to substitutions. For the best global alignment, the edges

are provided with costs and the path of minimal total cost is computed (courtesy of Jan

Eichhorn).

whole training set of 240 examples was split into ten parts. For each
part, a model selection was performed on the other nine parts in or-
der to choose the best set of hyperparameters for the algorithms and
kernels. For the SVM, C was chosen among C ∈ {1, 10, 100}. For the
U-SVM, Uls-SVM and Uc-SVM CU was selected from CU ∈ {0, 1, 10, 100}.
For U-SVM and Uls-SVM, ε ∈ {0.01, 0.05, 0.1, 0.5} was used. The ker-
nel parameters µ, λ, N and p for spikernel as well as the costs for the
alignment kernel are selected according to the values suggested in [25].
After selecting the best set of hyperparameters for the nine splits, the
algorithm was trained with those hyperparameters on the nine splits
and tested on the remaining one. This was done for all ten splits. The
ten error scores resulting from that scheme were averaged and a T-test
was performed to test for statistically significant differences in the error
scores.

Results and Discussion Tables 3.9, 3.10 and 3.11 show the pre-
diction errors for the homogeneous spikernel, the RBF kernel and the
alignment kernel. Apart from the zero-one loss for classification, an
angular loss measure is shown which takes into account the angular
structure of the different stimuli. As mentioned above, the different
stimuli were sine gratings presented in the orientations 0◦, 22.5◦, 45◦,
67.5◦, 90◦, 112.5◦, 135◦ and 157.5◦. Therefore, the stimulus space has a
structure that allows to compare the different classes. When using the
zero-one loss, a prediction can be either correct or completely wrong
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`0−1 for dL1 `◦ for dL1 `0−1 for dham `◦ for dham `0−1 for dhin `◦ for dhin

SVM 4.17± 3.40 0.94◦ ± 0.77◦ 5.42± 3.95 1.22◦ ± 0.89◦ 6.25± 4.05 1.41◦ ± 0.91◦

LS-SVM 4.58± 4.14 1.22◦ ± 1.09◦ 4.17± 4.39 1.03◦ ± 1.21◦ 6.25± 4.05 1.22◦ ± 1.09◦

U-SVM 4.17± 3.40 0.94◦ ± 0.77◦ 5.42± 3.95 1.22◦ ± 0.89◦ 5.42± 4.83 1.41◦ ± 0.91◦

Uls-SVM 6.25± 5.29 1.41◦ ± 1.19◦ 4.58± 4.14 1.12◦ ± 1.15◦ 5.00± 5.12 1.12◦ ± 1.15◦

Uc-SVM 4.58± 3.07 1.12◦ ± 0.86◦ 6.25± 5.29 1.41◦ ± 1.19◦ 5.83± 4.48 1.31◦ ± 1.01◦

Table 3.9: Zero-one loss `0−1 and angular loss `◦ for the homogeneous spikernel aver-

aged over ten splits of the dataset into training and test parts. Three different decoding

schemes have been employed: L1 decoding dL1 , Hamming decoding dham and hinge loss

based decoding dhin.

`0−1 for dL1 `◦ for dL1 `0−1 for dham `◦ for dham `0−1 for dhin `◦ for dhin

SVM 7.50± 4.73 1.88◦ ± 1.40◦ 6.25± 4.91 1.88◦ ± 1.88◦ 6.67± 5.27 1.69◦ ± 1.45◦

LS-SVM 7.08± 5.22 1.78◦ ± 1.43◦ 5.83± 4.48 1.50◦ ± 1.34◦ 6.67± 4.89 1.69◦ ± 1.38◦

U-SVM 6.25± 4.50 1.59◦ ± 1.33◦ 5.83± 4.48 1.50◦ ± 1.34◦ 7.92± 5.71 2.16◦ ± 1.82◦

Uls-SVM 7.50± 5.49 1.88◦ ± 1.47◦ 5.83± 4.48 1.50◦ ± 1.34◦ 7.08± 4.41 1.78◦ ± 1.28◦

Table 3.10: Zero-one loss `0−1 and angular loss `◦ for the RBF kernel averaged over

ten splits of the dataset into training and test parts. Three different decoding schemes

have been employed: L1 decoding dL1 , Hamming decoding dham and hinge loss based

decoding dhin. Due to the equivalence of the Uc-SVM and the U-SVM in the RBF case,

only the results for the U-SVM are shown here.

and therefore it does not take into account any metric structure on the
outputs. Since there is clearly some structure on the outputs in the
current case, confusing two orientations with a small angular differ-
ence should be penalised less than confusing two orthogonal gratings.
In order to respect the output structure, [25] uses an adapted loss
function:

`◦(α, β) = min{|α− β|, 180◦ − |α− β|}.

Here, α denotes the true orientation angle of the stimulus and β de-
notes the orientation angle associated with the predicted class.

The error scores shown in tables 3.9, 3.10 and 3.11 are comparable
to the results of [25, 26]. Unfortunately, the error scores show that no
Universum algorithm performs significantly better than its SVM coun-
terpart. In fact, the best performance is achieved by a plain SVM with
L1 decoding. On average, the least squares SVMs seem to perform a
little worse than the SVMs using hinge loss. The only case in which the
Uls-SVM performs significantly better than an LS-SVM is for the global
alignment kernel. However, this cannot be imputed on the Universum
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`0−1 for dL1 `◦ for dL1 `0−1 for dham `◦ for dham `0−1 for dhin `◦ for dhin

SVM 5.83± 5.27 1.29◦ ± 1.60◦ 4.58± 4.14 1.03◦ ± 0.93◦ 5.00± 4.30 1.50◦ ± 1.61◦

LS-SVM 53.33± 4.30 16.41◦ ± 5.27◦ 54.48± 6.65 15.28◦ ± 4.33◦ 52.08± 6.65 13.03◦ ± 1.85◦

U-SVM 5.83± 5.27 1.59◦ ± 1.60◦ 4.58± 4.14 1.03◦ ± 0.93◦ 5.00± 4.30 1.50◦ ± 1.61◦

Uls-SVM 5.00± 3.83 1.31◦ ± 1.10◦ 7.08± 5.22 1.78◦ ± 1.50◦ 7.92± 6.65 1.97◦ ± 1.85◦

Uc-SVM 5.83± 5.27 1.59◦ ± 1.60◦ 5.42± 3.43 1.22◦ ± 0.77◦ 5.00± 4.30 1.50◦ ± 1.61◦

Table 3.11: Zero-one loss `0−1 and angular loss `◦ for the global alignment kernel av-

eraged over ten splits of the dataset into training and test parts. Three different decoding

schemes have been employed: L1 decoding dL1 , Hamming decoding dham and hinge loss

based decoding dhin.

set, but rather on the global alignment kernel, which leads to extremely
badly conditioned kernel matrices for the employed data. The matrix
inversion involved in solving an LS-SVM or a Uls-SVM may therefore
lead to numerical problems. Even though the LS-SVM was offered ex-
tremely small values for C during the model selection, which amounts
to heavy regularisation of the kernel matrix’ diagonal, the predictions
of a plain LS-SVM are still very bad. Another reason for the very low
quality of the LS-SVM solution might be the very small number of train-
ing points in a one-versus-one scheme for eight classes on 240 training
points in total. Using the remaining points as Universum points seems
to have a numerically stabilising effect in this case.

The low performance of the Universum algorithms on this particular
neural decoding problems indicates that the features in the spike trains
for discriminating the different stimuli are not independent since the
classification accuracy cannot be leveraged by a classifier, which im-
plements this independence assumption. Theoretically, enhancing the
contrast between the classes by dampening typical features for other
stimuli by means of the Universum algorithms could help to augment
the algorithm’s performance. However, it seems that the employed data
representations are not suited for such a benefit from the Universum.
It seems that forcing the data from other classes to zero in order to
enhance the difference between the two labelled classes also had a
harmful impact on the ability of the classifier to detect discriminative
features.



Chapter 4

Discussion, Conclusion
and Future Work

4.1 Discussion and Conclusion

This thesis investigated the applicability of non-examples U 6∼ PX for
data-dependent regularisation on the basis of the so-called Universum
algorithm [103] and the underlying idea of inference with a Universum
by Vladimir Vapnik [99, 98].

Chapter 2 analysed the relationship between Vapnik’s original idea Uc-SVM: Rela-
tion between
margin and con-
tradictions on
U

of maximising the number of contradictions, the algorithmic implemen-
tation by [103] and the theoretical consequences for possible Univer-
sum sets. After stating the original Universum algorithm in an SVM
with hinge loss in 2.2.1.1, a least squares version was introduced in
2.2.1.2. A lower bound on the number of contradictions in terms of the
margin and the number of Universum examples with bounded norm
inside an ε-tube was established in section 2.3. Based on this bound,
a change of the constraints of the optimisation problem for SVMs was
proposed, leading to the formulation of the Uc-SVM.

The role of the Universum points in the algorithmic implementa- U-SVM: Speci-
fying unwanted
basis functions

tions was theoretically explored for the hinge loss U-SVM in 2.4.1 and
for the quadratic loss Uls-SVM in 2.4.2. Both sections revealed that the
Universum points specify directions the resulting learning algorithm
should be invariant against. In particular, it was shown that a hard
margin U-SVM without offset b corresponds to using a kernel, where
the span of the Universum points in the Hilbert space H is removed
from the span of the training examples. Therefore, the learning algo-
rithm’s solution is restricted to the orthogonal complement of U in H
and variations of the data in the span of U do not affect the value of the
function. Thus, the solution is invariant against features represented
by U. Another view is to interpret each Universum example together

121
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with the kernel function as a filter kz that responds to certain features
of the data. Enforcing 〈w, kz〉 = 0 can then be seen as keeping the
learning algorithm from using certain feature filters, i.e. the ones that
are contained in the Universum set U.

A similar role of the Universum points in the Uls-SVM was demon- Uls-SVM: Specify-
ing a noise covari-
ance

strated in 2.4.2 by establishing a link between the Uls-SVM and a hy-
brid of the two well-known learning algorithms kernel Fisher Discrim-
inant Analysis and kernel oriented Principal Component Analysis. It
was shown that covariance of the Universum points, centered on the
mid-point between the two class means, plays the part of the noise co-
variance in the hybrid. The hybrid of kFDA and koPCA and therefore
the Uls-SVM aims at finding a solution that is maximally orthogonal to
the principal directions of the noise while still retaining a good classifi-
cation of the training points. This can again be interpreted as choosing
a solution that is maximally invariant against patterns contained in U.

Due to the direct dependence of the learning algorithm’s solution on Universum
algorithms:
Data-dependent
regulariser for im-
plicit invariances

the Universum set, the loss term on the Universum can be seen as a
data-dependent regulariser in the style of the Virtual Support Vector
method [19, 12, 13] or noise injection [35]. However, while the Virtual
Support Vector method needs explicitly known transformations in or-
der to train a more robust classifier, the Universum allows to specify
much more general directions of invariance which are implicitly handed
over to the algorithm in the set U. In many applications, specifying a
suitable Universum set might be easier than adapting a general pur-
pose prior or regulariser to a given problem. In fact, the Universum
loss terms determine a semi-norm1 ||h||U on H which corresponds to a
Gaussian prior PH ∝ exp(−||h||U). It is important to note that, unless
U spans the entire space, PH is not normalisable. However, this is not
a big problem in practice, where PH is simply assumed to have a con-
stant value on regions where || · ||U = 0. Using this prior means that
the functions {h| ||h||U = 0} are not regularised, i.e. with only the regu-
lariser ||·||U the algorithm has no preference between two functions that
classify the training data equally well. In the case of the SVM imple-
mentations in 2.2.1.1 and 2.2.1.2, the general regulariser ||h||22 = 〈h, h〉
is still used and acts on all functions, while the data-dependent regu-
lariser acts only on the complement of {h| ||h||U = 0}.

After analysing the algorithmic implementation in sections 2.3 and Maximum number
of contradictions
on U vs. max-
imum entropy on
PY|L,x,z

2.4, the original idea of maximising the number of contradictions and
its relation to a maximum entropy label distribution on the Universum
points was explored in 2.5. After introducing the Bayesian model in
version space as stated by [32, 38], it was shown that the entropy of the
distribution of labels on independently drawn Universum points serves
as a lower bound on the number of contradictions. Since every test
example x induces two label distributions on U, the choice of the label

1For a semi-norm ||x|| = 0 does not necessarily imply x = 0.
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for x can be seen as a choice among those distributions. The notion
of the maximum entropy distribution also captures the initial idea of
the Universum by Vapnik, namely that the learning algorithm should
be most unspecific about the examples in U. Interestingly, relating the
maximum entropy model in version space to the employed loss function
on the Universum points in the U-SVM implementation leads to a set
of constraints on the Universum points which were introduced for the
Uc-SVM.

In the experimental chapter 3, the derived algorithms were tested Significantly bet-
ter performance
of the Universum
on digit recog-
nition and text
classification

on real world data. In the first two experimental setups, the algorithms
of chapter 2 were tested on two standard well behaved machine learn-
ing problems: digit recognition and text classification. In both cases,
employing a real world Universum improved the classification accu-
racy significantly. Artificially generated Universa which could not add
any additional information via data points did not augment the per-
formance of the classifier. This indicates that the essence of the Uni-
versum implementation is adding additional knowledge to the problem
and not transforming the data in a suitable way for the algorithm.

The second and larger part of chapter 3 consisted of applying the Non-significant,
but promising
trends on Brain
Computer Inter-
face problems

Universum to two learning problems of psychology and neuroscience:
Brain Computer Interfaces and neural decoding. The experiments with
Brain Computer Interfaces involved an EEG experiment to explore the
possibility of recording Universum data from an additional experimen-
tal condition that would serve as a baseline or background noise in the
Universum learning algorithm. Other datasets and possible Universa
were also tested. One of them was constructed from physiological evi-
dence in order to account for the non-discriminative desynchronisation
in the α-band related to vision. Although the accuracies did not in-
crease significantly, there was an apparent trend of lower error scores
for the learning algorithm employing real world Universa, especially the
UC3 from the third condition and the constructed Unm. A possible rea-
son for the non-significance of the results might be the small amount
of data due to the tedious recording procedure in BCI. Nevertheless,
low quality of the signals makes BCI a very difficult learning problem
and even a slight improvement is already a success. It also turned
out that the success of employing a Universum depends on the spe-
cific subject. This is not a big surprise since every subject might have
his own strategy to produce a detectable signal in a BCI. Therefore, it
seems appropriate to design or record Universum sets for each subject
individually. Generating data by looking at the information sources for
the different independent spatial filters as done for the Unm set seems
to be a cheap and effortless strategy to try.

On the neural decoding problem, the Universum neither yielded any No accuracy
improvement for
neural decoding

significant improvement nor did it show any apparent trend. Although
the offered Universa consisting of the remaining classes in the one-
versus-one scheme were not switched off by setting CU = 0 in the model
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selection stage, this choice turned out to be irrelevant or even harmful
for the prediction error on the test set. It is hard to say whether more
training data would lead to an improvement of the error scores via the
Universum, or whether it would make the learning algorithm switch
off the influence of the Universum by setting CU = 0 during the model
selection. Neural decoding seems to be one of the problems where it
is not very clear what good directions of invariance in terms of spike
trains should look like.

An interesting observation that can be made in all experiments with Evidence against
maximising
the number of
contradictions?

the Universum algorithms is that the Uc-SVM is not superior to the
original U-SVM in any case, although from a theoretical point of view it
is closer to the original idea of maximising the number of contradictions
on the Universum set, as explored in sections 2.3 and 2.5. Although the
considerations of 2.3 and 2.5 show a relation between maximising the
number of contradictions and putting the Universum points close to
the decision surface, it is still not clear if the good classification results
are an artifact of the algorithmic approximation of Vapnik’s idea or if it
is actually the original Universum idea which augments the algorithm’s
performance. This has to be investigated in more detail in the future.

4.2 Future Work

There are several directions of future research that seem interesting
to pursue. The first is to catechise the case b 6= 0 for the orthogonal
subspace setting described in 2.4.1. It might be possible to prove a
similar statement for this case as for the case b = 0, for which the
Universum data is simply projected out from the space of admissible
functions.

Furthermore, one could use the results of section 2.4.1 for designing General Uni-
versum kernel
for regression
and Bayesian
inference

a kernel that depends on the Universum points and that can be used
in any kernelised learning algorithm, especially in Bayesian learning
algorithms like Gaussian processes. Using this kernel, the Universum
concept could even be used in regression. A first naïve try could be to
smoothly control the part of the kernel that projects out the Universum
points with an additional kernel parameter θ ∈ (−∞,∞), e.g.

k⊥(x, x′) = k(x, x′)− tanh(θ) + 1
2

k||(x, x′)

= k(x, x′)− tanh(θ) + 1
2

(
q∑

r,s=1

(K−1
(U,U))rsk(x, zr)k(x′, zs)

)
.

By virtue of this definition, k⊥ would be a meta-kernel that could be
wrapped around any existing one. The factor tanh(θ)+1

2 ∈ (0, 1) allows
to control the impact of the set U in a smooth manner. Since the ker-
nel is then a smooth function of θ, it can be differentiated with respect
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to θ and therefore be used for inference with Bayesian learning algo-
rithms like Gaussian processes, which often require the kernel to be a
differentiable function of its parameters for model selection.

The last direction which shall be mentioned here is the exploration
of the connection between Vapnik’s idea of maximising the number of
contradictions on the Universum and the actual algorithmic implemen- Maximising Con-

tradictions or
Invariance Di-
rections: Playing
Billiard in version
space

tations in greater detail. As indicated by the results of sections 2.3 and
2.5, there seems to be a relation between both, but it is still not clear
whether the algorithmic implementation of the underlying idea of con-
tradiction maximisation accounts for the effect on real world data. One
possible strategy to pursue this would be to directly implement Vap-
nik’s idea by means of an algorithm by Rujan [78], called Billiard in
Version Space. The basic idea of the algorithm is actually very simple.
A fictitious ball is placed in the version space and moved into a ran-
dom direction. Once it hits the boundary of the version space, i.e. the
hyperplance corresponding to a labelled example, it is reflected. For
implementing the original idea, it would be necessary to keep track of
two things during the ball’s flight in version space: transitions through
hyperplanes corresponding to unlabelled test examples and transitions
through hyperplanes associated with Universum points. By counting
the number of transitions through hyperplanes of Universum points
inside a certain sub-compartment of the version space induced by a
certain labelling of the test points, one could count the number of
contradictions for this specific labelling since each crossed Universum
plane inside a sub-compartment gives rise to a contradiction. Tran-
sitions through hyperplanes of test examples simply change the sub-
compartment of the version space, i.e. swap the label of the example
corresponding to the crossed hyperplane. It would be interesting to test
the Billiard on artificial as well as on real world data and to explore the
necessary relation between the distribution PU of the Universum points
and the distribution PXY of the training data in order for the maximum
contradiction idea to be useful. After deriving the relations, one could
check if these are also implemented by the U-SVMs.

Since, under certain assumptions, the average flight time of the Bil- Maximising en-
tropy by playing
Billiard in version
space.

liard ball in version space is proportional to the volume of the area it is
traversing through, it would even be possible to implement the maxi-
mum entropy approach of section 2.5 with the Billiard in version space
and compare its performance to the performance of maximising the
number of contradictions.

Only if choosing the contradiction-maximising labelling of the test A new inference
principle?examples offers advantages over existing learning methods under well

defined conditions, the Universum idea can be seen as a valid new
inference principle.
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Appendix

4.3 Definitions

DEFINITION: CAUCHY SEQUENCE
A sequence (an)n∈N is called Cauchy sequence if for each ε > 0 there

exists an n0 ∈ N such that

∀n, m > n0 : |am − an| < ε

.

DEFINITION: SPAN

The set of all linear combinations of elements of a subset V of a
vector space

span{V } := {
∑
i∈I

aivi|ai ∈ R and vi ∈ V }

is called span of V .

.

DEFINITION: DOT PRODUCT

A function 〈·, ·〉 : X × X → R is called dot product if it fulfills the
following properties:

1. Symmetry: 〈x, x′〉 = 〈x′, x〉 for all x, x′ ∈ X

2. Bilinearity: 〈a1x1 + a2x2, a3x3 + a4x4〉 = a1a3〈x1, x3〉 + a1a4〈x1, x4〉 +
a2a3〈x2, x3〉+ a2a4〈x2, x4〉 for all a1, ..., a4 ∈ R and x1, ..., x4 ∈ X

3. Strict positive definiteness: 〈x, x〉 ≥ 0 for all x ∈ X , with equality
only if x = 0.

.
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DEFINITION: PROJECTION IN HILBERT SPACES

Let H be a Hilbert space and V ⊆ H a closed subspace. Then each
element h ∈ H can be uniquely written as h = v + v⊥, where v ∈ V and
〈w, v⊥〉 = 0 for all w ∈ V . The element v is the unique element of V
minimising the distance to h induced by the norm of H and is called
the projection Ph := v of h onto V . The projection operator is a linear
map.

.
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