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The light intensities of natural images exhibit a high degree of redundancy. Knowing the exact amount of
their statistical dependencies is important for biological vision as well as compression and coding appli-
cations but estimating the total amount of redundancy, the multi-information, is intrinsically hard. The
common approach is to estimate the multi-information for patches of increasing sizes and divide by the
number of pixels. Here, we show that the limiting value of this sequence—the multi-information rate—
can be better estimated by using another limiting process based on measuring the mutual information
between a pixel and a causal neighborhood of increasing size around it. Although in principle this method
has been known for decades, its superiority for estimating the multi-information rate of natural images
has not been fully exploited yet. Either method provides a lower bound on the multi-information rate, but
the mutual information based sequence converges much faster to the multi-information rate than the con-
ventional method does. Using this fact, we provide improved estimates of the multi-information rate of
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natural images and a better understanding of its underlying spatial structure.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Natural images contain an abundance of structure and regular-
ities which can be quantified as statistical dependencies or redun-
dancy between image pixels. Coding and compression algorithms
for photographic images exploit these dependencies for achieving
a good performance. Besides technical applications, the statistical
regularities in natural images also play an important role for our
understanding of sensory coding in the mammalian brain. In a
wide range of studies it has been shown that many response prop-
erties of neurons in the early visual system such as color oppo-
nency, bandpass filtering, contrast gain control and orientation
selectivity can be interpreted as mechanisms for removing these
redundancies in natural images (Atick & Redlich, 1992; Barlow,
1959; Buchsbaum & Gottschalk, 1983; Karklin & Lewicki, 2008;
Linsker, 1990; Olshausen & Field, 1996; Schwartz & Simoncelli,
2001; Simoncelli & Olshausen, 2001; Sinz & Bethge, 2009; Sriniva-
san, Laughlin, & Dubs, 1982). Quantitative comparisons have
shown that these response properties are not all equally effective
in removing statistical dependencies. Mechanisms removing sec-
ond-order correlations in natural images such as color opponency
and bandpass filtering yield a large reduction of redundancy. Less
pronounced but still substantial is the effect of contrast gain con-
trol (Lyu & Simoncelli, 2009; Sinz & Bethge, 2009). For orientation
selectivity, however, the potential for redundancy reduction turns
out to be much smaller (Bethge, 2006). Since the emergence of ori-
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entation selectivity is the most prominent difference in the re-
sponse properties of V1 neurons compared to the retina it can
serve as an important witness on whether neural response proper-
ties in cortex can still be interpreted convincingly in terms of
redundancy reduction (Eichhorn, Sinz, & Bethge, 2009).

An important unknown that is critical to judging this case is the
true total amount of redundancy in natural images. A principled
way of quantifying redundancy is to measure the multi-information
of a distribution (Perez, 1977). The multi-information of a multi-
variate random variable is the difference between the sum of its
marginal entropies and its joint entropy

IX1 0. X :ZH:H[X,»] —H[X1,..., X

It equals zero if and only if the individual components are sta-
tistically independent and is positive otherwise. It measures the
information gain caused by statistical dependencies between the
single variables. Unlike differential entropy, the multi-information
is invariant against arbitrary component-wise transformations
both for linear mappings, such as scaling, and nonlinear mappings,
such as taking the logarithm.

The conventional approach for estimating the redundancy per
pixel—the multi-information rate—is to estimate the multi-informa-
tion for patches of increasing sizes and divide by the number of
pixels (Bethge, 2006; Chandler & Field, 2007; Eichhorn et al.,
2009; Lee, Wachtler, & Sejnowski, 2002; Lewicki & Olshausen,
1999; Lewicki & Sejnowski, 2000; Lyu & Simoncelli, 2009; Sinz &
Bethge, 2009; Wachtler, Lee, & Sejnowski, 2001). In this way we
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obtain a monotonically increasing sequence converging to the mul-
ti-information rate

Lo = lim 21X . X
n—oo N

There is an important trade-off between two different kinds of
errors that affect the outcome of this limiting process: On the
one hand, the earlier we stop the sequence of increasing patch
sizes, the more we ignore long-range dependencies between image
pixels and, hence, underestimate the redundancy of natural
images. On the other hand, the larger the patch sizes get, the more
difficult it becomes to estimate the multi-information reliably due
to the increase in dimensionality. Multi-information estimation
strongly resembles the problem of estimating the joint density
and similarly suffers from the curse of dimensionality: The number
of states that need to be estimated grows exponentially with the
number of dimensions. This means that more and more regulariza-
tion is needed to avoid overfitting in high dimensions. As a conse-
quence, with increasing dimensionality it becomes increasingly
unlikely to capture all the structure of the density.

The trade-off between ignoring long range correlations for small
n and the increasing difficulty to estimate I[X;:...:X;] for large n
suggests that the estimation of the multi-information rate can be
improved substantially if one manages to construct sequences
other than {1I[X; : ... : Xa]},_, which converge faster to the same
limiting value I..

In this paper, we show that it is possible to construct such a se-
quence. The basic idea can be illustrated in the case of one-dimen-
sional stationary stochastic processes. From information theory it
is known that the conditional entropy converges to the entropy
rate of such processes' (Cover & Thomas, 2006; Shannon, 1948)

lim 1H[X],

n—oc N

Xa] = im HX, Xy 1, ... . X1]-

Multiplying this equation by (—1) and adding the marginal en-
tropy of the stationary process H[X;] =15} H[X,] at both sides,
yields an analogous relationship for the multi-information rate

Lo = im LIX, c o Xo) = M X < X 1, X4]
n—oo N n—oo
:ALTOH[ n}—H[X,,|X,,,1,...,X1]. (])

Note that the sequence on the left hand side of Eq. (1) reflects
the multi-information® between all the variables X, ..., X, while
the sequence on the right hand side reflects the mutual information
between X, and (X, ..., X;_1). The mutual information is the special
case of the multi-information which measures the statistical depen-
dencies between two random variables only, while it is possible that
the dimensionality of the two random variables is different. For
example, in our case X, is a univariate random variable and
(X1,...,Xn_1) is (n — 1)-dimensional. The chain rule for the multi-
information (Cover & Thomas, 2006)

n
Xy X =) I X, -, X,

k=2

shows that the multi-information can be decomposed into a sum of
mutual information terms. This suggests that the mutual informa-
tion based sequence { I'"™ with I .= [[X,, : X,_1,...,X;] quanti-
fies the asymptotic increnient in the multi-information while the
conventionally used multi-information based sequence {I;""}~.
with I .= 1I[X; : ... : Xy] constitutes a cumulative approach which
averages over these increments.

! For continuous random variables it is necessary to additionally assume that the
limit exists.
2 More precisely the multi-information divided by n.

Inspired by an early study in the fifties (Schreiber, 1956), an
incremental approach for estimating I, has already been used be-
fore in Petrov and Zhaoping (2003) but did not reveal its full poten-
tial. Our work elucidates a couple of points that have not been
addressed in those papers: First, we revise the mathematical justi-
fication for using the incremental approach in case of two-dimen-
sional random fields rather than one-dimensional processes as it is
necessary for modeling images. Second, we show that the mutual
information based method yields significantly better estimates of
I, than the conventional method does while Petrov and Zhaoping
(2003) did not provide any comparisons with previous methods.
Third, we show how particularly reliable multi-information esti-
mators can be constructed for the incremental approach such that
one obtains conservative lower bounds to the multi-information
rate. This allows us, fourth, to systematically investigate how the
two approaches perform on natural images for different number
of dimensions n also far beyond the case of n =7 pixels that was
studied in Petrov and Zhaoping (2003). Our best lower bound on
the multi-information rate for the van Hateren data set exceeds
their estimate by more than 20% and slightly outperforms the
bound obtained with the L,-spherical model (Sinz & Bethge,
2009). It is obtained when using a causal neighborhood of only
25 pixels.

The remaining part of the paper is structured as follows: In Sec-
tion 2, we introduce the multi-information based and the mutual
information based method for estimating the multi-information
rate. In particular, we present a proof for the convergence of the
two methods to the same limiting value I for two-dimensional sta-
tionary stochastic processes. In Section 3, we perform experiments
on artificial images in order to demonstrate the validity of the meth-
od, and apply it to natural images afterwards. Our results show that
the incremental method based on conditional distributions per-
forms significantly better and indicates that the multi-information
rate of natural images contains a substantial contribution from high-
er-order moments. We further corroborate this finding by a second
set of experiments where we first pre-whiten the images before we
fit the local image statistics. In this way, we not only confirm our pre-
vious estimates for the multi-information rate but we can also show
that the predominant statistical dependencies captured by current
models of natural images are of very limited spatial extent. In partic-
ular, the increase in the multi-information rate observed for the
cumulative method for increasing patch size does not reflect a
meaningful contribution of long range correlations but rather an
artifact caused by the pixels at the boundary. Finally, in Section 5,
we discuss the significance of our results and compare them to exist-
ing work.

2. Methods

In order to describe the statistical regularities of natural images,
they are often modeled as two-dimensional stationary random
fields. For the present study, stationarity is crucial as it is provides
the critical link between the cumulative and the incremental meth-
od for computing the multi-information rate. Stationarity means
that the random field is invariant under translations with respect
to the x- and y-coordinates of the image intensities. In the follow-
ing, we will first depict the mathematical underpinnings for using
the incremental approach in case of two-dimensional stationary
random fields. After that we will show that the incremental meth-
od is generally superior to the cumulative method, and then we
will describe how to construct reliable multi-information and
mutual information estimators for the cumulative and the incre-
mental method, respectively. In particular, we will construct con-
servative estimators such that also the empirical quantities
become reliable lower bounds to the multi-information rate.
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2.1. Mathematical underpinnings

Throughout the paper, we use uppercase letters to denote ran-
dom variables, bold font to indicate vectors sometimes equipped
with an subindex denoting the dimensionality. In particular, we

write I[X;.,] to refer to the multi-information I[X;:...:X,] and
I[X1:X5.,] to refer to the mutual information between X; and
(X21 .o vXn)-

For the incremental method, we estimate the multi-information
rate I, via the mutual information between X, and Xj.;,_1) for
increasing n

I = 11X : Xy0-1)] = HXa] = HXn X1,01)). (2)

As mentioned in the introduction, I and converge to the
true multi-information rate I, for one-dimensional stationary sto-
chastic processes. One subtle complication, hidden in the expres-
sion H[Xy|X1.(n—1)], is that the proof for the one-dimensional case
(see Cover & Thomas, 2006) uses stationarity to replace all condi-
tional entropy terms H[X\|X;.,_1] in the chain rule decomposition
of the joint entropy

cum
In

n n
H[X1) = HXq] + Y HX[Xao] = HXa] + Y HXaXoo10-1],
k=2 k=2
with shifted versions H[X,,|X;,_k+1:n_1] where the index of each com-
ponent is shifted by (n — k). For two-dimensional Markov chains,
however, the two-dimensional shape of the causal neighborhood
(see Fig. 1) implies that there are always conditional entropy terms
H[Xy|X1:,_1] that cannot be matched by index shifting. Nevertheless,

it is possible to show that {I;”“}L | converges to the same limiting
ne

value I as {I;™}> for all stationary random fields of arbitrary
dimensions (Féllmer, 1973). In order to make this theorem more
assessable we provide a simple proof for the special case of two
dimensions in Appendix A.

2.2. Superiority of the incremental approach over the cumulative
approach

Both types of limiting processes, the cumulative, multi-informa-

tion based sequence {I;""}~ and the incremental, mutual infor-

00

mation based sequence {I;”C} | grow monotonically with n and
ne

converge to the true multi-information rate from below. In other
words, each sequence defines a lower bound on the multi-informa-
tion rate that becomes increasingly tighter for large n and in the
limit converges to the same value for the multi-information rate.
Using the chain rule for the multi-information together with the
fact that conditioning reduces entropy we further obtain the fol-
lowing relations

@ETTC (b)

n1| n w |1 n

Fig. 1. Illustration of the shape of the image regions for the two different entropy
estimation methods: (a) The square shaped patch used for estimating I;". (b) The
causal neighborhood used for estimating I™. In this approach we compute the
conditional distribution of the white pixel given the gray ones.

m ] l . 1 n
W= ﬁl[xli”] < m”xl:ﬂ} =" = —1 ;I[Xk : X1k-1]
1 L )
<m;“xn :xlzn—l] :I:w élx (3)

First, this demonstrates that I;™", for which the total multi-
information is divided by (n — 1), is a uniformly better approxima-
tion to I, than the conventionally used I;'™, for which the multi-
information is divided by n. While the difference between the
two sequences decays very fast, (I'"™ — IT"™) ~ 1/n?, the difference
between the cumulative and the incremental sequence

. . 1 n
I;nc _ I;um = nj kzz: (I[Xn . xl:n,d — [[Xk : )(1:;{,]])7

can be quite substantial also for moderately large n. It is zero if and
only if I[X,:Xq.n1] = [Xn_1:Xq:n_2] = - - =1[X3:X;] which is equiva-
lent to saying that the process is a stationary Markov process of or-
der one. For all other processes, both cumulative sequences, I and
I;'™, always underestimate the true multi-information rate for any
finite n. In contrast, for the incremental, mutual information based

sequence {I;’“}m1 it holds I = I, for any Markov chain model if
ne

only the neighborhood Xi.,_; is sufficiently large (i.e. X,, condi-
tioned on X;.,_ is statistically independent of all other variables).
In summary, for any given number of dimensions n, the incremen-
tal, mutual information based sequence in general yields better
estimates of I, than the cumulative, multi-information based one.

2.3. Cumulative (multi-information based) method

The cumulative method is commonly used for estimating the
multi-information rate of natural images. For the sequence of the
multi-information of image patches of increasing size we have

1 15
I = X = ; HIXi] — H[Xu.]

~ HiX) +

7 (logp(X1:n))x, ,

> —(logp(x))x, + 1 (0gp(Xin)x,, =5 @)

where p denotes a particular model distribution.

In order to obtain an empirical estimate of I;'™ we use the lower
bound given by Eq. (4). The first term is the entropy H[X;] of the
univariate marginal distribution over the pixel intensities which
is the same for alli=1, ..., n due to stationarity. Since the problem
of estimating this term is identical for both cases, the cumulative
as well as the incremental approach, we will discuss it separately
at the end of the method section.

The second term in the definition of our estimator %" reflects
the average log-loss (Bernardo, 1979)

_<10gﬁ(x)>x," = H[Xl:l’l] +DKL[p||lﬂ = H[Xlzn}v

where Dy; denotes the Kullback-Leibler divergence, a positive
quantity that measures the mismatch between the true and the
model distribution. Therefore, the average log-loss has the desirable
property that any systematic mismatch between the model distri-
bution p and the true distribution p will lead to overestimation of
the joint entropy. In this way, we obtain a conservative estimate
of the true multi-information rate I...

For estimating the average log-loss, we follow (Eichhorn et al.,
2009; Lewicki & Olshausen, 1999; Lewicki & Sejnowski, 2000)
and use Monte-Carlo sampling
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T Z Ing X1

over a large ensemble of m samples x; which differs from the train-
ing set used for fitting the parameters of p.

—(log p(x)) Ny &

2.4. Incremental (mutual information based) method

For the incremental approach we employ the same strategy as
for the cumulative method: We use the average log-loss of a para-
metric density for estimating the conditional entropy in Eq. (2) in
order to obtain a conservative estimator for Iffc. In principle, it
would be nice to rewrite the conditional entropy in terms of the
joint entropy again

H[Xn|xl:(n—l)] = H[Xl:n] - H[X]:(n—l)]

1 ; 1 .
~ (108D Xin-1))x, 1, — 3 (108 PXK1n))x,,»

-
as it would allow one to use exactly the same parametric density
model like in the cumulative method to estimate the joint entro-
pies. The caveat, however, is that the upward bias in the error in-
duced by using the average log-loss when estimating entropies
can now occur in both directions.

Therefore, we resort to a different strategy, using the average
log-loss directly for estimating the conditional entropy which
again yields a lower bound

T = HIX,] +
< H[X] -

(log p(¥n[X1.n-1)))x, , (5)
HXo X1 1)] = I (6)

Therefore, we have to fit a conditional density model
P(Xn|X1.n_1)) rather than a joint density model p(X;.,) like in the
cumulative approach.

2.5. Parametric density model

For the sake of better comparison, we will use the same Gauss-
ian scale mixture (GSM) model to serve as the parametric model
for the average log-loss estimators in both approaches. The GSM
model is a rich subfamily of elliptical contoured distributions
(Wainwright & Simoncelli, 2000) which have recently been dem-
onstrated to provide a good fit to local patches of natural images
(Eichhorn et al., 2009; Lyu & Simoncelli, 2009).

We use a variant of the GSM model which is defined as a mix-
ture of a finite number of zero mean Gaussians with differently
scaled versions of the same covariance matrix X:

Z;k J/ X|Sk ),

where the class probabilities 4, sum up to one.

For parameter fitting we use an expectation maximization (EM)
algorithm. To this end, we define the hidden variable Z indicating
which scale is picked for a specific data point x:

Pxz(X|k) = A (X|sk - Z)

For the E-step, we need to compute the probability tf that Z = k
given the ith data point

p(X) = GSM(Xs, =, 4) 1,8 € R¥,

and py(k) = J.

AN (XilS - X)
t =pzx(kXi) = ———— =
X S eV (Rilse - Z)
In the M-step, for given 4, and t¥, 1 < k < K, 1 <i < m we obtain
Ak — eril tf‘
-
Z:'T:llzkzltif

For computing the scales and the covariance in the M-step, we
need to maximize

m K

2(5,2) =) Zt"log A (Xi|Sk, -Z).

i=1 k=

Since the maximum cannot be calculated analytically, we use a
block coordinate descent approach. In the first step, we fix s and
calculate %, in the second step, we fix ¥ and calculate s, using
the equations

1 & &tk
= D

k=1 i=1 °k

ST X
K0t

In our simulations, we find that one or two iteration are enough
for the covariance matrix and scale parameters to converge.

In order to use the same distribution for the second method, we
calculate the conditional distribution from the GSM model for fixed
parameters. This can be done analytically in the GSM model: Let
the covariance matrix of X of GSM(X;.,|s, X, 1) be

le(n—l),lz(n—l) z:lz(n—l),n
21:(n—1).n z:n,n

and s, =

pap

Marginalizing out the random variable X;, again yields a GSM
with parameters

GSM (X1:(n-1)|81:(n-1)» Z1:0-1).1:(n-1)» As(n-1) ) -

Then the conditional distribution is just the ratio between the
original joint and the marginalized distribution:
GSM(X1:11|sl:m z:l:n‘lzmil:n)
GSM(X1.(1-1)|81:(n=1)» Z1:(n—1

Dx, Xn|X1:n-1)) = .
XalXo 1) (XnX1:(n-1)) S R—"

2.6. Estimation of the univariate pixel entropy

In order to minimize the risk of overestimating the univariate
marginal entropy in either of the two approaches, we aim at using
a very precise nonparametric approach. To this end we use a histo-
gram based jackknifed maximum likelihood estimator (see e.g.
Paninski, 2003). Given m samples with a marginal standard devia-
tion of o we chose the bin width 4 according to the heuristic pro-
posed by Scott (1979): 4 = 3.49¢m3. Since the discrete entropy
asymptotically equals the differential entropy plus —log 4, we ob-
tain an estimate of the marginal entropy by adding the log of the
bin width 4. Using that method we reliably obtain a value of
1.57 bits per pixel for the univariate pixel entropy. Note that this
number like all differential entropies depends on the scale of the
pixel intensities. The multi-information rate, however, is indepen-
dent of the scale as it is computed from differences between differ-
ential entropies.

3. Experiments
3.1. Experiment on artificial data

In order to illustrate the two estimation methods, we first com-
pare the cumulative and the incremental approach on an artificial
stationary Gaussian random field using the autocorrelation of
natural images. To this end, we generated 10.000 images of
60 x 60 pixels by applying a linear transformation A to Gaussian
white noise ¢ such that the covariance matrix of the resulting
Gaussian distribution = =AA" resembles the covariance matrix of
the van Hateren data set. We estimated the covariance matrix from
samples of 60 x 60 patches using the fact that due to stationarity
the covariance between two pixels at location (x,y) and location
(x,y), respectively, must only depend on their relative distance
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(x — X,y —¥), which results in a symmetric block-Toeplitz covari-
ance matrix.

From those images we sampled ten pairs of training and test
sets of 1.000.000 image patches each, for a range of different patch
sizes. Fig. 1 shows the shape of the image patch shape used in our
two approaches. For the cumulative approach, we use patch sizes
2 x2,...,12 x 12. For the incremental approach, we use causal
neighborhoods of sizes 5, 13, 25, 41, 61, 85, 113, 145. The param-
eter estimation for the models was done in exactly the same way
as for the natural images below.

As a stationary Gaussian random field is completely defined by
the autocorrelation function we can compute the multi-informa-
tion and the mutual information analytically from AA'. Fig. 2a
shows the result for the full range from 1 to 3600 pixels.

Fig. 2b shows the empirical results obtained for Tg“m, 7;‘"“* and
7;’1”6 as a function of the dimension N when using the average log-
loss of a Gaussian model distribution. For comparison, the dashed
black lines indicate the true multi-information rate I, obtained
analytically from the relevant submatrices ™ and ™ of the
covariance matrix C needed to compute the multi-information
bounds

n
L <Zlog2 (Zem),., — log,|det () }),
k=1

: 1
I;nc _ i <10g20'% — lOgZG,ZIH:(n,]))v

respectively, where
Gﬁ = (Z;ﬁc) ,
nn

. a1 .
2 2 inc inc inc

020 =02 — (2 ) (2 ) (2 ) .
nf1:(n=1) n (” -\ " 1m0 1m0-)\ " J1m-1)n

The example visualizes the superiority of the incremental meth-
od over the cumulative method. The agreement between the ana-
lytical and empirical curves illustrates that the difference between
the two methods is not caused by insufficient amount of data or by
wrong model assumptions but solely by an unavoidable downward
bias of the cumulative method. As apparent from Eq. (3), this
downward bias originates from the fact that pixels close to the
boundaries suffer from an incomplete neighborhood. Therefore,
they do not contribute the full amount of redundancy to the mul-
ti-information rate and it requires very large image patches until
the pixels in the interior can sufficiently outnumber the pixels at
the boundaries. Even at a patch size of 60 x 60 the cumulative
method still underestimates the asymptotic information rate of

Analytical Ml for Artificial Data

(a)

— Incremental
—— Cumulative [1/N]
35 Cumulative [1/(N-1)]
©
S
o
2 ° ]
@ —
L 25
o
=
2
1.5 ; 3 3
10 10 10

Image Size in Pixel

2217

this stationary Gaussian random field by 0.02 bits per pixel. In
other words, the convergence of the cumulative methods is extre-
mely slow even though we are using the correct density model for
the evaluation of the average log-loss.

3.2. Natural image dataset and parameter estimation

We perform two blocks of experiments with natural images. In
the first block, we use images whose pixel values encode log-inten-
sities. In the second block, we use pre-whitened images generated
by a predictive coding scheme that subtracts from each pixel the
optimal linear prediction from a causal neighborhood around it.
In order to compute the multi-information for the original pixels,
we have to account for the whitening transformation. As this
whitening step can be described by a linear transform which has
vanishing log-Jacobian in the limit, we can lower bound the mul-
ti-information rate by the difference of the marginal entropy
(1.57 bits) on the pixel domain and the ALLs on the whitened
domain:

1 = H[Xa) + (108 PYal¥11))
< H[Xy] = HY Y101y
< H[ n} - IELTCH[Y"‘Y”’“”]

= H[X] - lim ,1—{H[Y1:k]
log|J| = OH[X,] - lim %H[xm =1

where Y;., denotes the whitened pixels. This lower bound is equal
to the multi-information estimate after whitening the images, plus
the difference of original marginal pixel entropy and marginal pixel
entropy of pre-whitened data, i.e.

T = H[Y,] — (10g PWalYrno1)) +  HIXa] — HIY.] (7)
N ——

marginal entropy difference

MI estimate in second layer

The difference between the marginal entropies for the van Hat-
eren dataset is equal to 2.9 bits.

For the experiments on natural images we used exactly the
same amount of data as in the artificial example described above.
That is for each patch size we sampled ten pairs of training and test
sets of 1.000.000 log-intensity image patches from the van Hateren
database (van Hateren & van der Schaaf, 1998). Again, for the
cumulative approach, we use patch sizes 2 x 2,...,12 x 12. For
the incremental approach, we use causal neighborhoods of sizes

Comparison: Empirical vs Analytical

(b)

— Incremental Method
— Cumulative Method [1/N]
Cumulative Method [1/(N-1)]
35 o ;
Analytical

Ml rate (Bits/Pixel)

1.5

4 24 44 64 84 104 124 144
Image Size in Pixel

Fig. 2. Verification of the estimation methods on artificial data: Multi-information rate in bits per pixel as estimated by our two methods as a function of the number of
pixels. The blue and cyan curves show the result for the cumulative method and the red curve shows the result of the incremental method which significantly outperforms
the cumulative ones. The left figure (a) shows the analytic results for the full range of up to n =3600 dimensions using a logarithmic x-axis. The right figure (b) shows an
excellent agreement between the analytical and the empirically estimated lower bounds for both methods.
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5,13, 25, 41, 61, 85, 113, 145. For each patch size we run different
versions of the GSM model with K=1, 4,7, 10 scale mixture com-
ponents. All results shown for Tem and Tine are evaluations on the
test set. Importantly, all evaluations on the training set yield iden-
tical results so that potential effects due to overfitting can be safely
excluded. The error bars in all figures indicate three standard devi-
ations over the ensemble of ten different test sets, apart from
Fig. 6b where we used two standard deviations because of the
smaller range of the y-axis.

4. Results

Fig. 3 shows the multi-information rate computed with the two
different methods for the SGM with K =10 scale mixture compo-
nents. One can see from the figure that the incremental method
significantly outperforms the cumulative one and provides a tigh-
ter lower bound.

Fig. 4 shows the estimated multi-information rates for the dif-
ferent methods and different numbers of scale mixture compo-
nents. The performance seems to saturate for about seven
mixture components.

For the incremental method, the lower bound takes a maximum
at a neighborhood size of 25 pixels, whereas the cumulative meth-
od still exhibits a tiny increase of the lower bound at 144 pixels.
This raises two questions:

(1) How can it be that the amount of dependencies captured
with the incremental method is decreasing with increasing
patch size?

(2) Could it be that the cumulative method is able to better cap-
ture long range interactions between pixels and hence at
some point can yield a tighter lower bound when using very
large image patches?

The first question is motivated by the fact that and I™ can
only increase with increasing patch or neighborhood size. As one
can see from the Eqgs. (4) and (5), however, the lower bounds Tgum
and 7’,’1“ can still decrease with increasing n if the inequalities
Tam < [™ and Tire < [™ become less and less tight. The differences
between the true and the estimated quantities I — ™ and
[ _Tine equal the Kullback-Leibler distance between the true dis-
tribution and the model distribution. If the mismatch of the model
distribution becomes larger for increasing patch size, this can re-
sult in a lower bound which decreases with increasing patch size.

cum
ITI

4
— Incremental Method
— Cumulative Method [1/N]
35 Cumulative Method [1/(N-1)]

MI rate (bits/pixel)

VST 24 a2 64 84 104 124 144

Image size in pixel

Fig. 3. Comparison of the cumulative and the incremental approach on natural
images with K=1,4, 7,10 scale mixture components. The blue and cyan curves
show the result for the cumulative method and the red curve shows the result of the
incremental method. Analogous to the results for artificial data, the incremental
method significantly outperforms the cumulative ones. The arrow shows the
maximum amount of multi-information estimated by the incremental method.

This is what we see in case of the incremental method. In case of
small patch sizes, the GSM model can exploit higher-order correla-
tions to model contrast dependencies between nearby pixels. In
case of large image patches, however, the GSM model has to com-
promise between strong higher-order correlations between nearby
pixels and weak higher-order correlations between distant pixels.
Therefore, the model fit of the GSM becomes worse for larger patch
sizes which causes the decrease in 1. In other words, the limited
flexibility of the GSM model to capture the structure of higher-or-
der correlations becomes increasingly severe with increasing
dimensionality. For second-order correlations, however, this is dif-
ferent, because with a Gaussian distribution one can always fit any
possible pattern of second-order correlations. Since in contrast to a
general GSM, a single Gaussian distribution is always entirely igno-
rant against higher-order correlation, we do not see the effects of
imperfect fitting of higher-order correlations in case of K= 1. For
a Gaussian model, the lower bound can therefore only increase.
This is nicely reflected in Fig. 4b: for K= 1 the lower bound always
increases, whereas for K > 4 the lower bound decreases for large
patch sizes.

Given that we explained the decrease of the lower bound for the
incremental method with the limited flexibility of the GSM model,
why do we not see a decrease for the cumulative method? We can
explain this with the downward bias caused by the reduced contri-
bution to the multi-information from pixels close to the patch
boundaries. It is important to note that the persistent increase in
case of the cumulative method does not originate from a better im-
age model. Like in the artificial example, we fitted the same model
distribution to optimally fit the joint distribution over the image
pixels for the cumulative as well as for the incremental method.
The crucial difference lies only in the way how we compute the
lower bound to the asymptotic information rate from it. In one case
we divide the total multi-information by the number of pixels and
in the other case we compute the mutual information between one
pixel and the rest by computing the conditional from the joint
model. Therefore, the persistent increase up to N =144 for the
cumulative method does not reflect a better fit to the data but
merely shows that the downward bias of the cumulative method
for small image patches, for which the ratio of boundary to interior
pixels is still large enough, is so substantial that it easily outbalanc-
es the decrease caused by degradation in the model fit.

Our second set of experiments on the pre-whitened images (see
Section 3) further corroborates this explanation. The redundancy
reduction caused by the pre-whitening is assessed as explained
above and is the same for both methods. Therefore, after pre-whit-
ening, all differences between the two methods can only originate
from differences in assessing the contribution of higher-order cor-
relations. Without the large contribution of second-order correla-
tions, the downward bias for the cumulative method for small
image patches becomes much smaller and hence, the effect of deg-
radation in the model fit on the lower bound becomes more visible
for the cumulative method as well. As can be seen in Fig. 5, the
cumulative method now has a maximum as well at a patch size
of 7 x 7 pixels. For the incremental method, the optimal neighbor-
hood size is further reduced to n = 13. The type of higher-order cor-
relations that can be captured by the GSM model are limited to
variance (contrast) correlations between the different pixels. The
fact that the lower bound takes its maximum for a very small
neighborhood size shows that this type of correlations can be ex-
plained (away) by short range couplings.

Note that the curves shown include the contribution of second-
order correlations that were removed during the pre-whitening
step. The second-order contribution equals the lower bound ob-
tained with the Gaussian distribution (K=1) and is about 2.7 bits
per pixel. Remarkably, the maximum lower bound determined
with the pre-whitened images yields the same estimate for the
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Fig. 4. Comparison of the multi-information rate estimates for different numbers of components (K =1, 4, 7, 10). (a) Multi-Information rate estimated by the cumulative
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Fig. 5. Comparison of the multi-information rate estimates for different numbers of components (K = 1, 4, 7, 10) based on pre-whitened image data set. (a) Multi-Information
rate estimated by the cumulative approach. (b) The same result using the incremental approach. Since the pre-whitening removes the downward bias of the cumulative
method for the second-order contribution to the multi-information, it now has substantially improved and its lower bound—similarly to the incremental method—now takes
a maximum for a relatively small patch size as well. The arrows indicate the maxima for both methods.

multi-information rate as the maximum lower bound obtained on
the original images. This nicely underlines the reliability of our
estimates.

As a final result we show how the incremental method can be
further improved by improving the parameter fitting. As explained
in Section 2, we always optimized the likelihood for the joint dis-
tribution and not for the conditional one. However, maximizing
the likelihood for the joint model does not necessarily also maxi-
mize the likelihood for the conditional distribution which would
be equivalent to minimizing the average log-loss of the conditional
distribution. Based on Jebara’s work on conditional expectation
maximization (Jebara, 2002) we developed a new algorithm (see
Appendix B) that we used to optimize the conditional likelihood
for the GSM model. The result of this optimization is shown in
Fig. 6a. In this way we obtained our best lower bound of 3.26 bits
per pixel which is almost 0.6 bits larger than the multi-information
rate obtained for a single Gaussian.

Fig. 6b shows the residual multi-information rate (see Eq. (7))
achieved by optimizing the conditional likelihood after pre-whit-
ening (solid red). For comparison we also show the residual mul-
ti-information rate when optimizing for the joint likelihood
(dashed) and the cumulative method (solid).

The large difference between the GSM using only a single mix-
ture component and the GSMs with several ones is particularly
interesting. Since the GSM in case of K = 1 is a plain Gaussian which
is completely determined by its mean and its covariance matrix,
the entropy rate of this GSM shows the contribution of the

second-order moments to the total entropy of the signal. The fact
that this difference is large shows the highly non-Gaussian behav-
ior of natural images and, therefore, a substantial amount of high-
er-order correlations (Eichhorn et al., 2009; Chandler & Field, 2007,
Ruderman & Bialek, 1994).

5. Summary and discussion

Measuring the total redundancy of natural images is a challeng-
ing task. In this paper we showed that the conventionally used
cumulative method suffers from an unfavorable downward bias
for small image patches. This problem can be avoided by using
the incremental method. We compared the two methods for both
artificial data and natural images, and demonstrated that the incre-
mental method always yields a better lower bound on the multi-
information rate.

As our method yields a conservative lower bound on the multi-
information rate, we can safely conclude from our results that
I, > 3.26 bits per pixel for the van Hateren data set. This number
is substantially larger than the 2.7 bits per pixel previously esti-
mated by Petrov and Zhaoping (2003) who used very small neigh-
borhoods only (n = 7). While they concluded that the total amount
of higher-order correlations in natural images is small, the differ-
ence in the performance of the Gaussian model (K = 1) and the full
GSM model (K=10) suggests that the amount of higher-order
correlations is at least 0.6 bits per pixel which we think is quite
substantial.
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Fig. 6. Further improvement of the lower bound by optimizing the GSM model for the conditional likelihood. The arrow indicates the maximal amount of multi-information
that was estimated. (a) shows the total multi-information rate while (b) shows the residual multi-information rate after the pre-whitening step (first term of Eq. (7)). The
optimization of the conditional likelihood leads to a better fit of the conditional distribution and, hence, less degradation in the incremental method (solid vs. dashed red
curve). It further corroborates the superiority of the incremental method above the cumulative method also for the pre-whitened data (red vs. other solid curves).

Using a less conservative nearest neighbor estimation method,
Chandler and Field (2007) arrived at an information rate similar
to ours. Taking the difference between the data points for Gaussian
white noise and natural scenes in Fig. 14 in Chandler and Field
(2007) would yield a multi-information rate estimate of about
3.1-3.3 bits per pixel. From their extrapolation in the same figure
one obtains a multi-information rate of 3.7 bits per pixel in the
limit.

In previous studies, we used the cumulative method together
with an L,-spherically symmetric model and an ICA model to esti-
mate the redundancy reduction achieved by different neural re-
sponse properties (Sinz & Bethge, 2009). The multi-information
reported for ICA and the L,-spherically symmetric model are 3.41
and 3.62 bits per pixel. Given that the multi-information estimates
in Sinz and Bethge (2009) were obtained on a different dataset
(Bristol Hyperspectral), the results are reasonably similar. We re-
peated the experiments of Sinz and Bethge (2009) and computed
the values for the van Hateren dataset for 144 dimensions. We ob-
tained 2.92 bits per pixel for ICA, 3.05 bits per pixels for the joint
GSM, and 3.17 bits per pixel for the L,-spherically symmetric mod-
el. This is better than the result of the cumulative method for the
GSM but about 0.1 bits per pixel worse than the result of the incre-
mental method. Thus, again the incremental method provides a
better bound by using only 25 dimensions. The differences be-
tween the results for the Bristol Hyperspectral dataset and the
van Hateren dataset are within the typical variations one observes
for different image libraries. They mainly originate from variations
in the second-order redundancies. In particular, the difference be-
tween the L,-spherically symmetric model and ICA is very similar
for both data sets: 0.21 bits per pixel for Bristol Hyperspectral
and 0.25 for van Hateren.

In this study, we used the Gaussian scale mixture model for
both the cumulative and the incremental approach for the sake
of comparison. In the future we can make further advantage by
using more sophisticated conditional density models that are opti-
mally tailored to the incremental approach. It is interesting to note
that the conditional distribution has a close link to the inverse of
the auto-covariance matrix of random processes (the so called pre-
cision matrix). Typically, the precision matrix is much sparser and
hence captures the conditional dependency structures much more
efficiently than the covariance matrix (Rue & Held, 2005). In fact,
for a Gaussian Markov random field, an entry of the precision ma-
trix is non-zero if and only if the two points are conditionally
dependent. When looking at the precision matrix for natural
images, the number of components that have a value significantly

larger than zero is typically very small and restricted to a very
small neighborhood around that pixel.

In summary, we expect that the incremental method combined
with an appropriate conditional density model will lead to major
improvements in statistical modeling of natural images.
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Appendix A

Definition 1. (Causal points). Let the causal points of a particular
point in a random field be all points that are above that particular
point or at its left in the same row.

Definition 2. (Causal neighborhood of radius [). Let the causal
neighbors of radius [ of a particular point be all causal points which
their horizontal and vertical distance from that particular point
being smaller or equal to [ (see Fig. 1b for an example of a causal
neighborhood of radius 3).

Theorem 1. (Convergence of entropy rate for 2D stationary pro-
cess). The sequence of conditional entropies with causal neighbor-
hoods converges to the entropy rate of a stationary random process.

Proof. Consider a sequence of sections X with increasing size
which is taken from a 2D stationary process (see Fig. 7). Each sec-
tion is parametrized by a parameter [ which determines the extent
of the section. The width of the section is chosen to be w = I and its
height is equal to h=P+1—-2. O

The pixels are enumerated from top-left to button-right as it is
shown in the Fig. 7. Let G and G be the sets that contain the indices
which are shaded in gray and white colors, respectively. Further-
more, let n denote the total amount of pixels in the section, and
let n¢ and ng be the number of pixels in the gray and white regions,
respectively.

If we let the size of the sections go to infinity by letting [ go to
infinity, they will cover the whole plane and the number of white
pixels will become negligible, i.e.
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Since the sections X will cover the whole plane in the limit, the se-
quence of entropies of the single sections converges to the entropy
of the stationary process:

n(l)

.1 .
h= }lj;l %H[xl:n(l)] = }lj;l ﬂ ;H[Xk‘xlzk—l]-

If we split the sum into two sums for the pixels in the gray, and
white region, respectively, we obtain
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keG
(10)

Define H,[X] to be the conditional entropy of X given a causal
neighborhood of radius « (see Fig. 1b). Since conditioning de-

creases the entropy we obtain the following inequalities for sta-
tionary processes:

HIX X1
HX|X1x-1

HI7
H07

Vkeg,
VkeG.

Hy < ] <
Hy < 1<

Using these inequalities in Eq. (10) we obtain:

ne(l) ng(D)
n(l) U

Using Eqgs. (8) and (9) in Eq. (11) we get:

<h<
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The sequences H,,; and H; will converge to the same limit, since
{Hw}i=12.... is a proper subsequence of {H;}-1 2, . . Hence, using the
sandwich theorem the sequence of conditional entropies {H;};-1 2, .
converges to the true entropy rate from above.

Appendix B

Minimizing the conditional average log-loss for a given model is
equal to maximizing the conditional likelihood. Given the observed
data {x;}[",, the conditional log-likelihood is given by:

L2(8.Z1.(n-1).1:(n-1)4)

The conditional log-likelihood is the difference between the
joint log-likelihood .#; and the marginal log-likelihood .#,. Com-
monly, the EM algorithm is used to estimate mixture distributions.
It constitutes a variational approach which maximizes a lower
bound on the joint log-likelihood based on the Jensen inequality.
In each iteration the maximum of the bound is computed. Since
here .#, enters the conditional log-likelihood with a negative sign,
the normal Jensen inequality is not useful to bound this function.
Jebara derived a reversed form of the Jensen inequality for the
exponential family (Jebara, 2002).

We used Jebara’s method for deriving a conditional EM algo-
rithm for the scale mixture of Gaussians. In the E-step the follow-
ing coefficients are computed:
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Using these coefficients we get the following update rule for the
scale and marginal covariance parameters.
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The conditional prediction matrix I' = Z;}MH:(M)le(n,m and
the conditional variance y=2X,, — Zn.l:(n—l)zizn,])_1;(n,1)2]:(n—1),n
only depend on the joint log-likelihood #; and their estimations
in the M-step are given by:

1 K m
M= > > e
m k=1 i=1
-1
I'= Ml:(n—]).] (n—l)Mli(”*U-m

-1
V = Mn.n - Mn.l:(n—l)Ml:(n,U 1 (n,”Ml:(n—l).n-

Similar to the normal EM algorithm for optimizing the joint
likelihood of theGSM model, one needs to iterate between estimat-
ing s and X for maximizing the bound.

The derivation before was for the case of fixed weighting coef-
ficients 4. For updating the weighting coefficients one can derive
another EM update rule. Define a (K — 1) x (K — 1) matrix N with
the following entries

A=A

Nij = -
— ik

if i =j;
ifi#].

Consider a K — 1-dimensional vector z,,0 < k < K for which all
entries are zero except the kth one, which equals one. Furthermore,

let zx a zero vector with K — 1 elements. Using those vectors, we
get the following update rules for the E-step

vf = 4G(rt/2) (@i — e 1) N7 (21— e ),
and the M-step
Ak — eri] t{" — erzl rk

1
me s

We observed that in practice the conditional EM algorithm con-
verges very slowly. We found out that this is because the reverse Jen-
sen inequality for the covariance is a very loose bound which
becomes even looser for higher dimensions since the coefficient w
increases rapidly with increasing dimensionality. As a consequence
of this, we observed empirically that the EM algorithm increases the
log-likelihood slower than gradient ascend with line search.

We accelerated the EM algorithm by using the Quasi-Newton
method (algorithm QN2 in Jamshidian & Jennrich, 1997). The idea
behind this method is to approximate the Newton update H~'g(9),
where H is the Hessian and g is the gradient at 0 with the update
g(0) — Sg(0) where g is EM gradient. In other words, the difference
of two EM steps and S is a matrix that needs to be updated as well.
The authors modify BFGS Quasi-Newton method to get the update
for S:

AO*AOT + (AG*AOTY'
AgTAO

T * T
AS — (1 L Ag'Ao )AOAO

AZTAO ) AgTAO

where A0* = —Ag + SAg while A9 and Ag show the amount of
change in variables 0 and g after each iteration, respectively. In
the implementation one initializes with $=0 and then updates S
according to the update rule. If the line search is not successful §
is reset to zero.

In practice we observed that this Quasi-Newton acceleration
significantly increases the convergence speed but it still remains
slow. In the future, this may be substantially improved by exploit-
ing the Quasi-Newton and Newton method directly on the log-
likelihood.
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