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Abstract

One of the major goals of neural system identification is to understand the underlying
neural mechanisms that give rise to visual perception and sensation. While the quest
for understanding visual perception goes back many centuries, with the technological
advancements in the past decades, machine learning methods have been increasingly
used to analyze and model neural responses recorded from various visual sensory areas.
In particular, deep neural networks (DNNs) have achieved state-of-the-art performance
in predicting the activity of neurons in these regions. These networks have also been
shown to learn representations of stimuli that closely match those found in the brain.

Besides their utility as hypotheses about the functional and structural properties of the
brain, these powerful predictive models of sensory neurons, sometimes called digital
twins, allow us to conduct experiments that are not feasible to conduct with their
biological counterpart. Importantly, the findings of the experiments conducted with
these digital twins have been verified in-vivo, providing further evidence that these
models do indeed capture the complex functional properties of visual sensory neurons.

In this thesis, I will discuss three projects that leverage recent advancements in using
DNNs to model the responses of visual sensory neurons. The first project focuses on a
hybrid model that combines DNNs with latent variable models. This model aims to
accurately predict the distribution of neural responses to unseen stimuli. It also infers
latent state structures that have meaningful relations to behavioral variables, such as
pupil dilation, as well as to the functional and anatomical properties of visual sensory
neurons. The second project discusses a model that learns a reparameterization of the
stimulus and, combined with DNN-based predictive models, learns a manifold in the
stimulus space that visual sensory neurons are equally and maximally responsive to.
The third and final project addresses an essential aspect of model development: finding
better ways to quantify how good these models are in capturing neural responses.

Overall, this thesis focuses on three important aspects of neural system identification:
(1) developing models that account for multiple driving factors of neural responses,
(2) showcasing how these models can be used to generate insight into functional and
structural properties of visual sensory neurons, and (3) developing metrics that assess
the quality of such models.



Zusammenfassung

Eines der Hauptziele der neuronalen Systemidentifikation besteht darin, die zugrun-
deliegenden neuronalen Mechanismen zu verstehen, auf denen die visuelle Wahrnehmung
und Empfindung basieren. Obwohl das Forschungsfeld, das sich mit den Mechanismen
der visuellen Wahrnehmung beschäftigt, schon mehrere Jahrhunderte alt ist, hat vor
allem der technologische Fortschritt der letzten wenigen Jahrzehnte im Bereich Ma-
chine Learning dazu beigetragen, neuronale Antworten aus verschiedenen visuellen
Hirnarealen zu analysieren und zu modellieren. Insbesondere haben tiefe neuronale
Netzwerke (DNNs) Spitzenleistungen bei der Vorhersage der Aktivität von Neuronen in
visuellen sensorischen Bereichen erzielt. Es hat sich auch gezeigt, dass diese Netzwerke
Repräsentationen von Stimuli erlernen, die denen im Gehirn sehr ähnlich sind.

Neben ihrem Nutzen als Hypothesen über die funktionalen und strukturellen Eigen-
schaften des Gehirns ermöglichen diese leistungsstarken Vorhersagemodelle für sen-
sorische Neuronen, manchmal als digitale Zwillinge bezeichnet, Experimente auszuführen,
die mit ihren biologischen Gegenstücken nicht machbar wären. Wichtig ist, dass die
Ergebnisse der mit diesen digitalen Zwillingen durchgeführten Experimente in-vivo
verifiziert wurden, was weitere Belege dafür liefert, dass diese Modelle tatsächlich die
komplexen funktionalen Eigenschaften visueller sensorischer Neuronen erfassen.

In dieser Dissertation werde ich drei Projekte diskutieren, die aktuelle Fortschritte bei
der Verwendung von DNNs zur Modellierung der Antworten visueller sensorischer Neu-
ronen nutzen. Das erste Projekt konzentriert sich auf ein Hybridmodell, das DNNs mit
latenten Variablenmodellen kombiniert. Dieses Modell zielt darauf ab, die Verteilung
neuronaler Antworten auf ungesehene Reize genau vorherzusagen. Es erschließt auch
latente Zustandsstrukturen, die sinnvolle Beziehungen zu Verhaltensvariablen wie
Pupillenerweiterung sowie zu den funktionalen und anatomischen Eigenschaften vi-
sueller sensorischer Neuronen aufweisen. Das zweite Projekt behandelt ein Modell, das
eine Reparametrisierung des Reizes erlernt und in Kombination mit DNN-basierten
Vorhersagemodellen eine Mannigfaltigkeit im Stimulusraum erlernt, auf die visuelle
sensorische Neuronen gleichmäßig und maximal reagieren. Das dritte und letzte Pro-
jekt befasst sich mit einem wesentlichen Aspekt der Modellentwicklung: der Suche
nach besseren Möglichkeiten zur Quantifizierung der Qualität dieser Modelle bei der
Erfassung neuronaler Antworten.

Insgesamt konzentriert sich diese Dissertation auf drei wichtige Aspekte der neuronalen
Systemidentifikation: (1) die Entwicklung von Modellen, die für mehrere treibende
Faktoren neuronaler Antworten verantwortlich sind, (2) die Darstellung, wie diese
Modelle verwendet werden können, um Einblicke in funktionale und strukturelle
Eigenschaften visueller sensorischer Neuronen zu gewinnen, und (3) die Entwicklung
von Metriken zur Bewertung der Qualität solcher Modelle.
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1 Introduction

1.1 Computational modeling of visual sensory neu-
rons

Visual sensation and perception refer to the process of sensing, organizing, identifying,
and interpreting visual information received through the eyes [1]. Importantly, the
human visual system performs these tasks in a robust and energy-efficient manner
[2, 3]. Such qualities spark curiosity and a desire to understand the visual system to
build machines and algorithms (i.e., computer vision) that mimic the useful properties
of their biological counterpart. Additionally, understanding how visual perception is
implemented and performed by the brain can have significant implications for reversing
visual disorders.

The quest for understanding visual perception goes back many centuries to Newton
who laid the foundations of modern work on color vision in 1704, Franz Boll who
discovered rhodopsin (which he called “visual purple” at the time) in frog retina in
1876, Hartline who described receptive fields, as well as ON, OFF, and ON-OFF
responses in 1938, and many others [4]. However, while by the mid-20th century
important discoveries were made about the retina, it was still unclear how the cortex
processes visual stimuli at the level of single neurons. It was in 1959 that Hubel and
Wiesel changed the course of visual neuroscience research with their experiment on
cats’ visual cortex [5]. Along with a follow-up paper in 1962 [6], they showed the
presence of orientation and direction tuning in the primary visual cortex, described
simple and complex cells, characterized orientation columns, and proposed a model
for orientation selectivity (Fig. 1.1).

Up until this point, many facts were known about the anatomical, neurophysiological,
and psychophysical aspects of sensation and perception, and scientists were starting
to wonder how these various components work together to give rise to perception.
In other words, as Barlow puts it, they needed “ideas about what operations are
performed by the various structures we have examined” [7]. The initial question
that Barlow attempted to tackle in 1961 was: How does the brain, and specifically
the retina, deal with the enormous amount of incoming sensory signals to extract
behaviorally relevant information? Borrowing ideas from information theory, Barlow
argued that sensory neurons recode the incoming signal to find the most relevant (i.e.,
least redundant) internal representation of the outer world (what he referred to as the
“redundancy-reducing hypothesis”) [7]. His influential work predicted that the visual
system should have filters that are evolved to extract informative statistics from the
natural world.

Building upon these ideas, Olshausen and Field [8] developed a learning algorithm that,
when trained on natural images, generated filters resembling the orientation-selective
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Figure 1.1: Left: Response of an example neuron from a cat’s visual cortex to
different stimulus orientations [5]. Right: Model suggested by Hubel and Wiesel
[6] for explaining the organization of simple receptive fields. Both illustrations are
adapted with permission from Hubel and Wiesel’s original papers in the Journal of
Physiology [5, 6].

receptive fields observed in the primary visual cortex (V1) by Hubel and Wiesel [5].
Their findings highlighted that sparseness was an important characteristic of the filters
to decorrelate features of the natural images, resulting in a more efficient (i.e., less
redundant) signal for the higher visual areas. Subsequent technological advancements
enabled the simultaneous recording of neural populations across multiple visual areas,
along with experimental and behavioral variables, resulting in an abundance of research
and discoveries pertaining to various aspects of visual sensory areas. Notable directions
of investigation include characterizing the filters employed by visual sensory neurons
to extract relevant stimulus features, determining whether their operations are linear
or more intricate and nonlinear, quantifying the influence of behavioral variables and
cognitive processes (e.g., attention) on the coding properties of sensory neurons, and
uncovering population-level computational principles [9–15].

As the data became larger in number of samples, features, and recorded neurons,
machine learning (ML) methods have been increasingly used to analyze and model the
responses of sensory neurons. One specific approach that has taken the field by storm
in the past decade is the use of deep neural networks (DNN). As models of the brain,
they have achieved state-of-the-art performance in predicting neural responses [16–22],
and have been shown to learn representations of the stimulus that closely match those
in the brain [11, 23].

Besides providing hypotheses about the functional and structural properties of the
brain, these powerful predictive models allow us to conduct experiments that are not
feasible to conduct with their biological counterpart. For instance, let us consider that
we want to find out what patterns in a 100× 100 image maximize the activity of a
specific neuron. If we try all combinations of pixel values, even in the case where they
can only take on binary values (i.e., 0 or 1), we will have to show 210000 images to the
subject, which is simply impossible. However, by using a predictive model of visual
sensory neurons, several studies have recently shown that these models can be reversed
to find maximally exciting stimuli (MEI) for a target neuron [9, 10, 24]. Importantly,
when these MEIs were shown back to the subject, the corresponding neurons in the
visual cortex elicited similarly high responses. These findings provide further evidence
that these models, often referred to as digital twins, do indeed capture the complex
functional properties of visual sensory neurons.

9



Building upon recent advancements in neural system identification, this thesis aims
to address several open questions and technical challenges in the field. While deep
neural networks (DNNs) have shown promise in predicting neural responses and
mimicking the functional properties of visual sensory neurons, there remains a gap in
our understanding of how internal processes and behavioral variables modulate these
responses. Additionally, with the increasing complexity of these models (e.g. using
more complex distributions to capture neural responses), there is a need for methods
to quantify the performance of these predictive models on multiple aspects.

To address these challenges, this thesis discusses three projects conducted during my
PhD research, each designed to fill a specific gap in current knowledge. The first
project introduces a model that combines DNNs with latent variable models. This
model not only accurately predicts the distribution of neural responses to unseen
stimuli but also infers latent state structures that have meaningful relationships with
behavioral variables, such as pupil dilation. This work addresses the technical gap
in modeling the activity of sensory neurons by simultaneously taking into account
both sensory input and internal processes, thereby providing a foundational step in
understanding how internal states and behavioral variables affect neural responses.

The second project presents a model that learns to reparameterize the stimulus. When
combined with DNN-based predictive models, this approach identifies a manifold
in the stimulus space to which visual sensory neurons are equally and maximally
responsive. This work contributes to ongoing efforts to characterize the encoding
properties of visual sensory neurons by elucidating the complexity of their invariances.
The third project focuses on applying improved metrics for evaluating the performance
of predictive models in capturing neural responses, addressing a crucial aspect that
has often been overlooked in the field.

By tackling these specific challenges, this thesis aims to advance our understanding of
the functional and structural properties of visual sensory neurons and to provide new
tools and metrics for future research in the field.

1.2 List of publications and contributions

While these projects are described in detail in their corresponding chapter, a list of
their corresponding publications can be found below where I layout the details of
my and other authors’ contributions. Additionally, I contributed to multiple other
projects which are also listed below.

1.2.1 Publications included in this thesis
The list below contains the publications corresponding to the main projects that con-
stitute parts of this thesis, accompanied by a detailed description of the contributions
that were made to each publication. The description of the contributions is based on
the Contributor Roles Taxonomy (CRediT) guidelines [25–27] with minor adaptations.
The adaptations were made such that the categories better capture different aspects
of a method paper, which is mainly the case for these papers. The symbol * denotes
equal contribution.
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• Mohammad Bashiri*, Edgar Walker*, Konstantin-Klemens Lurz, Akshay
Jagadish, Taliah Muhammad, Zhiwei Ding, Zhuokun Ding, Andreas Tolias, and
Fabian Sinz. A flow-based latent state generative model of neural population
responses to natural images. Advances in Neural Information Processing Systems,
34:15801–15815, 2021.
Initial idea: MB and AJ
Methodology and theoretical development: MB, EW, FS, AJ
Software: mainly MB with the help of AJ and KKL
Method validation and experiments: mainly MB with the help of AJ
Data collection and preprocessing: TM, ZhiD, ZhuD
Figures and visualization: MB
Writing (original draft): MB, EW, FS
Writing (review and editing): MB, EW, FS, KKL
Funding acquisition: FS and AT
Remarks on the shared authorship: While MB implemented almost the
entire software and conducted most of the experiments, EW had significant
contributions to the ideas, provided valuable feedback, and closely supervised
the project. Therefore, an equal first authorship was deemed fair.

• Luca Baroni*, Mohammad Bashiri*, Konstantin F Willeke, Ján Antolík, and
Fabian H Sinz. Learning invariance manifolds of visual sensory neurons. In
NeurIPS Workshop on Symmetry and Geometry in Neural Representations, pages
301–326. PMLR, 2023.
Initial idea: FS, JA, LB, MB
Methodology and theoretical development: LB, MB, FS
Software: LB and MB
Method validation and experiments: mainly LB with the help of MB
Data collection and preprocessing: publicly available data was used
Figures and visualization: MB and LB
Writing (original draft): LB and MB
Writing (review and editing): all authors
Funding acquisition: JA and FS
Remarks on the shared authorship: Other than the method validation and
experiments, which were mainly conducted by LB, MB and LB had an equal
contribution to the project.

• Konstantin-Klemens Lurz*, Mohammad Bashiri*, Edgar Y. Walker, and
Fabian H Sinz. Bayesian oracle for bounding information gain in neural encoding
models. In International Conference on Learning Representations (ICLR), 2023.
Initial idea: FS, EW, MB
Methodology and theoretical development: FS, KKL, MB, EW
Software: KKL and MB
Method validation and experiments: mainly KKL with the help of MB
Data collection and preprocessing: publicly available data was used
Figures and visualization: MB and KKL
Writing (original draft): KKL, MB, FS
Writing (review and editing): all authors
Funding acquisition: FS
Remarks on the shared authorship: Other than the method validation and
experiments, which were mainly conducted by KKL, MB and KKL had an equal
contribution to the project.
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1.2.2 Other publications
Below is a list of publications that are a result of the projects, conducted during the
PhD, to which I contributed. For these publications, I will only explain my specific
contribution, instead of providing a comprehensive list of all authors’ contributions.

• Konstantin-Klemens Lurz, Mohammad Bashiri, Konstantin Friedrich Willeke,
Akshay Kumar Jagadish, Eric Wang, Edgar Y Walker, Santiago Cadena, Taliah
Muhammad, Eric Cobos, Andreas Tolias, et al. Generalization in data-driven
models of primary visual cortex. In International Conference on Learning
Representations (ICLR), 2021.
Contributions: MB contributed to discussions about the methodology, figures
and visualization, as well as writing (review and editing).

• Konstantin F Willeke*, Paul G Fahey*, Mohammad Bashiri, Laura Pede,
Max F Burg, Christoph Blessing, Santiago A Cadena, Zhiwei Ding, Konstantin-
Klemens Lurz, Kayla Ponder, et al. The sensorium competition on predicting
large-scale mouse primary visual cortex activity. arXiv preprint arXiv:2206.08666,
2022.
Contributions: This is a white paper about a competition that was conducted
as part of NeurIPS 2022. MB was one of the main organizers of the competition
and contributed to the development of the starting kit, competition metrics,
website infrastructure, and the evaluation of submissions.

• Paweł A Pierzchlewicz, R James Cotton, Mohammad Bashiri, and Fabian H
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distributions. arXiv preprint arXiv:2210.11179, 2022.
Contributions: MB contributed to discussions about the methodology, figures
and visualization, as well as writing (review and editing).

• Paweł A Pierzchlewicz, Mohammad Bashiri, R James Cotton, and Fabian H
Sinz. Optimizing mpjpe promotes miscalibration in multi-hypothesis human
pose lifting. In International Conference on Learning Representations (ICLR)
as a Tiny Paper, 2023.
Contributions: MB contributed to discussions about the methodology, figures
and visualization, as well as writing (review and editing).

• Jiakun Fu, Pawel A Pierzchlewicz, Konstantin F Willeke, Mohammad Bashiri,
Taliah Muhammad, George H Denfield, Fabian Hubert Sinz, and Andreas S
Tolias. Heterogeneous orientation tuning across sub-regions of receptive fields of
v1 neurons in mice. Under Review .
Contributions: MB contributed to the methodology by providing a method
that finds optimal Gabor filters via gradient-based optimization methods [34].

• Polina Turishcheva, Paul G Fahey, Laura Hansel, Rachel Froebe, Kayla Ponder,
Michaela Vystrčilová, Konstantin F Willeke, Mohammad Bashiri, Eric Wang,
Zhiwei Ding, Andreas S. Tolias, Fabian Sinz, and Alexander S. Ecker. The
dynamic sensorium competition for predicting large-scale mouse visual cortex
activity from videos. arXiv preprint arXiv:2305.19654, 2023.
Contributions: This is a white paper about a competition that was conducted
as part of NeurIPS 2023. MB contributed to the preprocessing and packaging of
the dataset for the competition.
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2 Background

This chapter serves as a reference guide to aid in understanding subsequent chapters.
While not essential to read upfront, it may be useful to refer back to relevant sections as
you progress through the thesis. Each section specifies its relevance to other chapters.

2.1 Deep neural networks
This section offers context for DNN-based models of visual cortical neurons, relevant
to chapters 3, 4, and 5.

Deep neural networks (DNNs) are parametric machine learning models that consist
of multiple linear-nonlinear transformations before yielding an output [36, 37]. Each
transformation, commonly referred to as a hidden layer, is a linear transformation of
its input followed by a simple nonlinearity such as ReLU or sigmoid [38]. Each output
dimension of such linear-nonlinear transformation is called a hidden unit. Neural
networks that contain a higher number of hidden units are said to be wider and those
that contain more hidden layers are referred to as deeper. On the lower extreme where
there is only a single hidden layer, the network is called a shallow network.

Feedforward neural networks While there is much flexibility in the specific
architecture of DNNs (i.e. how hidden units are connected), the most common type
of architecture is the forward deep network, in which the computations are applied
sequentially (Fig. 2.1):

y = f(x) = (fL ◦ fL−1 ◦ · · · ◦ f 2 ◦ f 1),

where f ℓ(z) = σ(Wℓz+ bℓ) is a linear-nonlinear transformation, performed by the ℓth
hidden layer, with W being the weight matrix and b the bias term.

Convolutional neural networks Convolutional neural networks are a sub-class of
DNNs that consist of a series of convolutional layers [39, 40]. Convolutional layers
are linear-nonlinear transformations based on the convolution operation, where each
output dimension is a weighted sum of the nearby dimensions in the input. In the
case of a 2D input (e.g. an image) the same weight matrix, so-called kernel or filter,
slides through the 2D input and is applied to all spatial locations, resulting in a single
channel in the output. Most commonly, each convolutional layer consists of multiple
kernels resulting in a 2D output with multiple channels corresponding to the number of
kernels. Importantly, applying the same kernel at every spatial location, referred to as
weight sharing, results in a reduction in the number of model parameters, facilitating
model training and generally resource allocation. 2D convolutional models are widely
applied to image data where nearby pixels are statistically related. This allows the
model to use local computation resulting in a model that performs well while at the
same time having fewer parameters.

13



Figure 2.1: Matrix notation for a neural network with a 3-dimensional input, a 2-
dimensional output, and 3 hidden layers. The figure is reprinted from [41].

Objective function and model training Model training refers to the process of
optimizing the parameters of the model to achieve the best possible performance on
a specific task. A specific task (e.g. classification) enforces a certain choice of the
objective function (e.g. cross-entropy loss) which is most commonly formulated such
that it is minimized during training. The objective function L, also commonly referred
to as loss function, typically yields a single scalar value which is computed by taking
the average over all training samples x and the dimensions of the output y:

θ∗ = argmin
θ

1

ND

N∑

i=1

D∑

d=1

L(fθ(xi), ydi ),

where θ represents the parameters of the DNN f , θ∗ is the optimal set of parameters
resulting in the minimum loss value, N is the number of samples, and D is the number
of output dimensions. Such cases where the objective function contains model outputs
fθ(x) as well as the target values y are referred to as supervised tasks. In contrast,
unsupervised tasks use an objective function that does not include any target values
and is only applied on (a representation of) the input samples with the goal of finding
meaningful and abstract structures in the data.

2.1.1 Models of visual cortical neurons

Figure 2.2: A generic schematic of a GLM.
The figure is reprinted from [42].

The primary goal of neural system iden-
tification is to construct a model that de-
scribes how a neuron responds to arbitrary
stimuli, viewing sensory neurons as com-
putational units that implement a certain
function f(x) on the sensory input x. Im-
portantly, such a model can then be used
to conduct experiments in silico that are
not feasible in vivo, serving as a digital twin
of its biological counterpart.

Single-neuron models The traditional approach to modeling the stimulus-response
relationship of sensory neurons involves building separate models for each neuron.
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provides localized and smooth filters that provide information about the neurons’ receptive

field and the set of useful feature maps for prediction.

Finally, we also observed that only a small number of feature maps was used for each neu-

ron: the weights decayed exponentially and only 20 feature maps out of 256 contained on aver-

age 82% of the readout energy (Fig 6B).

An alternative form of regularization or inductive bias would be to constrain the readout

weights to be factorized in space and features [40], which reduces the number of parameters

substantially. However, the best model with this factorized readout achieved only 45.5% FEV

(Table 1), presumably because the feature space has not been optimized for such a constrained

readout.

Goal-driven and data driven CNNs set the state of the art

Multi-layer feedforward networks have been fitted successfully to neural data on natural image

datasets in mouse V1 [38, 40]. Thus, we inquired how our goal-driven model compares to a

model belonging to the same functional class, but directly fitted to the neural data. Following

the methods proposed by Klindt et. al [40], we fitted CNNs with one to five convolutional lay-

ers (Fig 7A; see Methods for details).

The data-driven CNNs with three or more convolutional layers yielded the best perfor-

mance, outperforming their competitors with fewer (one or two) layers (Fig 7B). We therefore

decided to use the CNN with three layers for model comparison, as it is the simplest model

with highest predictive power on the validation set.

We then asked how the predictive performance of both data-driven and goal driven mod-

els compares to previous models of V1. As a baseline, we fitted a regularized version of the

classical linear-nonlinear Poisson model (LNP; [46]). The LNP is a very popular model used

to estimate the receptive field of neurons and offers interpretability and convexity for its

optimization. This model gave us a good idea of the nonlinearity of the cells’ responses.

Additionally, we fit a model based on a handcrafted nonlinear feature space consisting of a

set of Gabor wavelets [4, 47–49] and energy terms of each quadrature pair [6]. We refer to

this model as the ‘Gabor filter bank’ (GFB). It builds upon existing knowledge about V1

function and is able to model simple and complex cells as well as linear combinations

thereof. Moreover, this model is the current state of the art in the neural prediction challenge

for monkey V1 responses to natural images [50] and therefore a strong baseline for a quanti-

tative evaluation.

Fig 7. Data-driven convolutional network model. We trained a convolutional neural network to produce a feature space fed to a GLM-like

model. In contrast to the VGG-based model, both feature space and readout weights are trained only on the neural data. A. Three-layer

architecture with a factorized readout [40] used for comparison with other models. B. Performance of the data driven approach as a function of

the number of convolutional layers on held-out data. Three convolutional layers provided the best performance on the validation set. See

Methods for details.

https://doi.org/10.1371/journal.pcbi.1006897.g007
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Figure 2.3: An example of a DNN-based model of visual sensory neurons, which consists
of multiple convolutional layers, outputting the shared nonlinear representation of the
input, followed by a neuron-specific spatially-localized linear readout. The figure is
reprinted from [23].

Generalized Linear Models (GLMs) and related methods have been commonly used
for this task [42–44]. These models typically consist of a linear filter followed by
a nonlinearity, along with a noise model (e.g. Poisson noise) to account for the
stochasticity in neural responses (Fig. 2.2). GLMs can be formulated as convex
optimization problems, allowing for global optimum solutions, and can be extended
to incorporate spatiotemporal relationships and coupling between neurons [45, 46].
However, the linear mapping followed by a nonlinearity imposes a strong assumption on
the discoverable space of functions, limiting the capacity of GLMs to identify complex
nonlinear computations. An alternative approach is to feed a nonlinear representation
of the original input to the GLM. One challenging aspect of this alternative is selecting
the appropriate feature space since it requires a deeper understanding of the cell’s
nonlinear behavior. However, obtaining the appropriate feature space can be considered
as part of the model and can be learned using advanced machine learning methods (e.g.
DNNs). While this runs into the potential disadvantage of losing the interpretability
offered by GLMs, it provides more powerful predictive models that can capture novel
and non-trivial nonlinear behaviors of visual sensory neurons.

DNN-based models DNNs are the state-of-the-art models for learning feature
spaces that are relevant for the data and the task. In the last decade, these models
have been increasingly applied to neural responses recorded across multiple species,
modalities, and brain areas, and resulted in considerable gain in predictive power
compared to previous models [11, 15–21, 23]. DNN-based models, in their general
form, consist of a DNN (so-called core) that learns a nonlinear representation of the
input and a GLM (commonly referred to as readout) that uses the output of DNN
as input to yield predictions of neural responses. In the context of visual sensory
neurons, since we are dealing with a 2D input (i.e. images or videos), CNNs have been
the dominant choice as the architecture used for the core (Fig. 2.3). Most of these
models are applied to a population of neurons as opposed to a single neuron, where
the nonlinear representation (i.e. output of the CNN) is shared among all neurons,
followed by a neuron-specific readout. The motivation behind this design choice is
that many neurons in the visual cortex are known to perform similar computations
but at different spatial locations [8].

Such a model that allows simultaneous modeling of many neurons combined with the
segregation of the shared nonlinear computations (via the core) and the neuron-specific
computations (via the readout) offers the flexibility for innovative design choices
on several ends. First, modeling many neurons simultaneously allows for capturing
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dependencies between neurons, for instance by adding a latent variable model to
the DNN-based models [22]. Second, the core and the readout can take advantage
of known properties of the sensory neurons, such as orientation selectivity [18] and
localized receptive fields [17, 21] to not only reduce the number of model parameters
but also yield better-performing models. Additionally, as mentioned earlier, power
predictive models of sensory neurons allow us to conduct experiments in silico that are
not feasible in vivo. For instance, they can be used to find an input that maximizes
the activity of a single neuron or a whole population of neurons [9, 10], or to find
the types of invariances that visual sensory neurons exhibit [28, 47, 48]. Many of
these findings have been verified in vivo, which provides additional evidence, beyond
prediction performance, that these models do indeed capture the complex nonlinear
computations performed by visual sensory neurons.

2.2 Latent variable models
The concepts introduced in this section are directly applicable to the methodologies
used in Chapter 3.

In many cases, different components of the observed data are not independent of
one another. For instance, sensory neurons have been shown to be affected by low-
dimensional internal processes such as attention [49–51], which gives rise to statistical
dependencies between neurons. By investigating the statistical relationship between
different components of the data, latent variable models (LVM) seek to identify the
underlying factors and the generative process that gives rise to the observed data.
While many LVMs have been applied to neural responses [52–64], here we will focus
on two specific models, namely, Factor Analysis (FA) and Normalizing Flows (NF).

2.2.1 Factor analysis
Factor analysis (FA) is a specific form of latent variable models that assumes the
observed d-dimensional data y ∈ Rd is generated via the following generative process:

y = b+Cz+ ε, (2.1)

where z ∈ Rk is a low-dimensional latent state with k ≪ d and an isotropic Gaussian
prior z ∼ N (0, Ik) whose samples map to y via the factor loading matrix C ∈ Rd×k, b
is the mean of the FA model, and ε ∼ N (0,Ψ) is an independent noise term with a
diagonal covariance matrix Ψ ∈ Rd×d. Below, I will derive the joint distribution p(z,y)
which we will use later to demonstrate some use-cases of the FA model.

Since the FA model assumes a linear mapping of a Gaussian-distributed latent variable
z onto the observed variable y, the joint distribution p(z,y) is a Gaussian distribution
too:

p(z,y) = N (

[
z
y

]
;

[
µz

µy

]
,

[
Σz Σzy

Σyz Σy

]
),

where the mean [µz, µy]
⊤ can be computed as follows:

µz = 0 (from the prior p(z) = N (0, Ik)),
µy = E[y] = E[b+Cz+ ε] = b+CE[z] + E[ε] = b,
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and the terms in the covariance matrix can be computed as follows:

Σz = Ik (from the prior p(z) = N (0, Ik)),

Σzy = Σyz
⊤ = E[(z− µz)(y − µy)

⊤] = E[z(Cz+ ε)⊤] = IkC
⊤ + 0 = C⊤,

Σy = E[(y − µy)(y − µy)
⊤] = E[(Cz+ ε)(Cz+ ε)⊤] = CC⊤ +Ψ,

resulting in the following joint distribution:

p(z,y) = N (

[
z
y

]
;

[
0
b

]
,

[
Ik C⊤

C CC⊤ +Ψ

]
).

Note that the marginal distribution p(y) = N (y;b,CC⊤ +Ψ) over y does not involve
the latent variable z and only contains the parameters b, C, and the diagonal entries of
the covariance matrix Ψ, which can be learned via common gradient-based optimization
methods to maximize the marginal likelihood p(y|b,C, diag(Ψ)).

Inferring latent states from observed data Once the FA model is optimized,
using the joint distribution and the conditional properties of the Gaussian distribution,
we can infer the latent variables that correspond to the observed data y. This involves
computing the conditional distribution p(z|y) parameterized by the conditional mean
µz|y and the conditional covariance Σz|y:

p(z|y) = N (z;µz|y,Σz|y),

where the distribution parameters can be computed using the conditional properties
of the Gaussian distribution:

µz|y = E(z|y) = µz +ΣzyΣy
−1(y − µy)

= 0+ΣzyΣy
−1(y − µy)

= C⊤(CC⊤ +Ψ)−1(y − b), (2.2)

Σz|y = Σz −ΣzyΣy
−1Σzy

⊤

= Ik −C⊤(CC⊤ +Ψ)−1C. (2.3)

Here, µz|y represents the expected value of the latent variables knowing about the
observed samples of y, while Σz|y reflects the uncertainty over this expectation. Note
that computing the conditional distribution involves inverting a d×d matrix with rank
d, which depending on the dimensionality of the data can be computationally expensive.
However, due to the special structure of the covariance matrix, which contains a rank-k
matrix CC⊤ and a diagonal matrix Ψ, this inversion can be computed cheaply using
matrix inversion lemmas. Using the Woodbury matrix identity, we can re-write the
inversion (CC⊤ +Ψ)−1 in Eqs. 2.2 and 2.3 as follows:

(CC⊤ +Ψ)−1 = Ψ−1 −Ψ−1C(Ik +C⊤Ψ−1C)−1C⊤Ψ−1.

With this reformulation, the inversion is applied on a k × k instead of a d× d matrix,
which in most cases is computationally much cheaper. Furthermore, since Ψ is a
diagonal matrix, its inverse can be easily computed by replacing the diagonal elements
of the matrix with their reciprocals.

Inferring interpretable latent states Despite a well-defined relationship y =
b+Cz+ ε between observed samples y and the latent variable z, interpreting the
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inferred latent states E(z|y) is difficult and quite arbitrary. The reason is that the
factor loading matrix C can only be uniquely determined up to an arbitrary orthogonal
transformation. That is, we can transform C and z by any arbitrary orthogonal
transform matrix R to yield C′ = CR and z′ = R⊤z, and the original relationship is
preserved since C′z′ = CRR⊤z = Cz. Furthermore, since a permutation matrix is an
orthogonal transformation, the inferred latent states are not necessarily ordered by
how much variability in the data they account for.

To address this issue, a similar approach to Yu et al. [65] can be used. Briefly, we
orthonormalize the columns of C by applying singular value decomposition to the
learned C which yields C = UDV⊤. As a result, Cz can be re-written as Cz =
U(DV⊤z) = Uz̃ where z̃ ≡ DV⊤z is the orthonormalized latent state. Consequently,
instead of inferring the MAP of z, E[z|y], we would infer DV⊤E[z|y]. This approach
incurs multiple advantages. Firstly, while the elements of z (and corresponding
columns of C) have no particular order, the elements of z̃ (and corresponding columns
of U) are ordered by the amount of data variance they explain. Therefore, the
inferred latent states are ordered by their contribution in explaining the variance
observed in the data, resulting in more intuitive and interpretable latent states.
Secondly, when the singular values are non-zero and non-repeating, the method
recovers a unique latent state z̃ for any arbitrary orthogonal transformation, since
Cz = UDV⊤z = UDV⊤RR⊤z = CRR⊤z = C′z′ = Uz̃, where the resulting
orthonormalized latent state z̃ ≡ DV⊤z stays the same regardless of using transformed
C′ = CR and z′ = R⊤z.

Improved prediction by conditioning on other dimensions Another use-case
of the FA model is to leverage the learned statistical dependencies in the data to make
better predictions about certain dimensions given the other dimensions. Similar to
the latent states, we can use the conditional distribution p(yi|y\i) = N (yi;µi|\i,Σi|\i)
to compute the MAP estimate E(yi|y\i) for a target dimension i given all the other
dimensions \i:

µi|\i = E(yi|y\i) = bi +Σi,\iΣ
−1
\i,\i(y\i − µ\i)

Σi|\i = Σi,i −Σi,\iΣ
−1
\i,\iΣ

⊤
i,\i,

where Σ = CC⊤ + Ψ, and the subscript i and \i correspond to the entries of the
corresponding variable for the target dimension and other dimensions, respectively.

2.2.2 Normalizing flows
One of the major goals of probabilistic machine learning is to model unknown prob-
ability distributions given the samples drawn from that distribution. Learning the
distribution not only allows us to evaluate likelihoods and detect outliers but also
generate new samples for simulations or create larger datasets for training models.
This generally falls under the category of unsupervised methods and is also sometimes
called generative modeling.

Normalizing Flows (NF) [66–68] are a family of generative models with a tractable
distribution where both density evaluation is exact and new samples can be efficiently
generated. This is an important advantage compared to other generative models such
as generative adversarial networks (GANs) [69] and variational auto-encoders (VAEs)
[70], where exact density evaluation of new samples is not possible.
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(a) Forward propagation (b) Inverse propagation

Figure 2.4: Schematic of the forward and inverse computations performed by the
coupling layer. The figure is adapted from [71].

NFs learn an unknown probability density px(x) given samples of a random variable
x ∈ RD, leveraging the change of variables formula:

px(x) = pz(fθ(x)) · | det∇xfθ(x)|, (2.4)

where pz(·) is a known probability density (e.g. standard Gaussian) and fθ is an
invertible and differentiable mapping, parameterized with θ. The parameters of the
invertible transformation can be learned via gradient-based optimization algorithms
such that the likelihood px(x) is maximized. The absolute determinant | det∇xfθ(x)|
of the Jacobian ∇ of fθ with respect to x preserves the volume of the density, such
that

∫
x
px(x) dx =

∫
z
pz(fθ(x)) dz, ensuring that the probability density stays valid

under x.

Joint normalizing flows Real-world application of Normalizing Flows often involves
high dimensional data such as images. While a multi-dimensional transformation
can be efficiently performed using fθ, computing the absolute determinant of the
Jacobian | det∇xfθ(x)| can be computationally very expensive due to the determinant
computation. If the data is D-dimensional, the resulting Jacobian is a D ×D matrix
resulting in a computational complexity of O(D3). Consequently, much of the research
in developing NF models has mainly focused on designing transformations fθ where
the determinant can be more efficiently computed [71–73]. One common approach, the
so-called coupling layer introduced by Dinh et al. [71], is to split the input dimensions
x = {x1:d,xd+1:D}, leave one part untouched while updating the other part using a
function which is simple to invert, but which depends on the untouched dimensions in
a complex way (Fig. 2.4):

y1:d = x1:d (2.5)
yd+1:D = xd+1:D ⊙ exp(sϕ(x1:d)) + tψ(x1:d), (2.6)

where sϕ and tψ stand for scale and translation, and are learnable functions from
Rd 7→ RD−d, and ⊙ is an element-wise product. The resulting Jacobian is a triangular
matrix, where the determinant can be efficiently computed as exp

[∑
j sϕ(x1:d)j

]
.

Note that, since computing the Jacobian determinant does not involve computing the
Jacobian of sϕ or tψ, these functions can be arbitrarily complex (e.g. DNNs).

As mentioned before, the goal of the NF model is to transform samples of a complex
distribution into a latent space where they are distributed according to a known simple
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distribution. However, a single coupling layer leaves some dimensions unchanged,
preserving their original distribution. This can be addressed by composing a chain
of coupling layers in an alternating pattern, such that the components that are left
unchanged in one coupling layer are updated in the next one. Alternating dimensions
for each coupling layer, combined with the transformation of a set of dimensions as
a function of the other dimensions, allows the NF models to leverage the statistical
dependencies between different dimensions and transform a complex distribution into
the target (also commonly called base) distribution with a known density function.

Since the NF models that I described so far operate on all dimensions jointly (i.e.
transformation of some dimensions depends on other dimensions), I refer to these
models as joint normalizing flows. In the next part, I will describe marginal normalizing
flows, where the transformation of each dimension is independent of all other dimensions.
While this formulation incurs some limitations, it also provides some advantages which
we will discuss.

Marginal normalizing flows Marginal NFs are a specific formulation of NF models
where the transformation fθ operates on each dimension independent of all other
dimensions such that fθ(x) = [fθ1(x1), . . . , fθD(xD)]

⊤. For the transformation fθ to
be invertible, it must be a monotonic function. Consequently, it can be constructed
from a sequence of 1D monotonic functions (e.g. ELU, exp, log, or an affine transfor-
mation). While an affine transformation alone does not affect the distribution, using
it in combination with other functions is complementary. Specifically, when using
fixed transformations, a specific region of the transformation function could be more
applicable to the data, where an affine transformation could be used to shift and scale
the data accordingly. Another alternative is to use piecewise functions, potentially
allowing for more expressive 1D transformations to be learned [74]. Note that, in con-
trast to joint NF models, in marginal NF models the parameters of dimension-specific
transformations are not a function of other dimensions. Therefore, they are defined as
parameters that can be learned via gradient-based optimization methods.

The main limitation of marginal NFs is that they cannot take advantage of the
statistical dependencies between dimensions to transform the high-dimensional data
into a simple distribution such as a standard normal distribution. This limitation can
be mitigated by making the parameters of the target distribution learnable such that
it best fits the transformed samples. While this formulation is not as expressive as
the joint normalizing flow models, it offers some attractive advantages. First, since
the transformations operate independently across dimensions, the Jacobian matrix
is diagonal. This property allows for an efficient computation of the determinant
det∇xfθ(x) =

∏n
i=1

∂fθi
∂xi

by simply multiplying the diagonal entries.

Second, due to the dimension-specific transformations, by construction, the marginal
NF model cannot account for statistical structure in the data. This provides the oppor-
tunity to push all the statistical dependencies to be captured by the base distribution
and allows us to easily compute conditionals and marginals. Briefly, the conditional
distribution p(x(1)|x(2)), can be computed by first transforming the samples into the
latent space, performing the conditioning in the latent space p(fθ1(x

(1))|fθ2(x(2))),
and finally normalize via the determinant of the Jacobian to yield the conditional
distribution in the original space:

p(x(1)|x(2)) = p(fθ1(x
(1))|fθ2(x(2))) ·

∣∣det∇x(1)fθ1
(
x(1)
)∣∣ . (2.7)

Importantly, when using joint NF models, where the transformation is not separable
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across dimensions, computing marginal and conditional densities is generally not
possible. For a more detailed derivation see Appendix A of Manuscript 1.

2.3 Implicit neural representations
The material in this section is particularly relevant for understanding the methodologies
employed in Chapter 4.

In machine learning, data is traditionally represented on a discrete grid. For instance,
images are represented by 1D (grayscale) or 3D (RGB) values at each pixel coordinate.
However, the underlying signal is often continuous. Representing data on a discrete
grid not only ties the data to a certain resolution but also can be an inefficient use
of memory. This issue can be addressed by representing the data with continuous
functions, which has gained a lot of popularity lately. For example, an image can
be represented by a continuous function mapping the 2D pixel coordinates to their
corresponding RGB or grayscale value. When such a mapping is parameterized by a
neural network it is typically referred to as an implicit neural representation (INR)
[75].

Motivated by the abstraction and the efficient coding that is observed in nature,
an equivalent approach was introduced by Stanley [76] called compositional pattern
producing networks (CPPN). One example of such abstraction and complexity in
nature is the human genome. While it consists of a finite set of genes, the intricate
interactions among these genes can encode a much larger set of structural and functional
components, such as the entire human body. CPPNs were introduced as models that
capture such abstraction as well as the efficient coding through a composition of
functions (e.g. neural networks). If we consider images as an example modality,
feeding pixel coordinates x and y as input to the CPPN f results in a pattern that
can be conceived as a phenotype whose genotype is f . While CPPNs and INRs are
essentially equivalent concepts, for the remaining parts I will use INR for referring to
these models.

INRs have been applied on a wide range of modalities and have been shown to
successfully represent images [76, 77], 3D shapes [78, 79], 3D scenes [80], videos [81],
and audios [82]. In their generic form, these models take the grid points x (e.g. pixel
coordinates) as input and are trained to produce their corresponding feature value f
(e.g. RGB values) as their output:

θ∗ = argmin
θ

L(fθ, {xi, fi}i∈I), (2.8)

where fθ is the INR with parameters θ, I represents the set of all grid points in the
data (e.g. all pixel locations in the image), and L is the loss function that is chosen
based on the specific task and optimization criterion.

Representing a single image As generative models, INRs can be used to learn
an implicit representation of one or multiple images (Fig. 2.5). To learn the implicit
representation of a single image, we can feed in the pixel coordinates x as input to the
model and optimize the model parameters θ such that a reconstruction loss (e.g. mean
squared error) is minimized. Depending on whether the image pixels have RGB or
grayscale values, the final layer is either 3-dimensional or 1-dimensional, respectively.
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Figure 2.5: Demo of implicit neural representations (INR) as generative models of
images. To generate a single image, the model takes pixel coordinates as input and
outputs RGB (or grayscale) values. Since the resolution of the pixel grid is defined by
the user, the image can be generated at arbitrary resolutions. To generate multiple
images with the same INR model, we introduce an auxiliary variable as an additional
input that induces variability in the output even though the model is being fed the
same set of pixel coordinates.

Representing multiple images via modulation INRs can also be used to learn
an implicit representation of multiple images. However, since multiple images are all
defined on the same grid of pixels, to induce variations in the generated images we
need to introduce additional variables such that for different values of these auxiliary
variables the model generates different images even though it is being fed the same set
of pixel coordinates (Fig. 2.5 bottom row). Using auxiliary variables to allow INRs to
capture multiple data samples is commonly referred to as modulation. Modulations
can be implemented in different ways. One approach is to simply add these variables
as inputs to the model [28], similar to what is shown in Fig. 2.5. Alternatively, they
can be used to apply affine transformations (shift and scale) to the activations of the
neural network layers [83–85]. While the INR model learns a representation of the
shared data structure across all samples, these modulations encode sample-specific
information that can be used for a variety of downstream tasks (e.g. classification).

In the following chapters, I will discuss several projects that use the concepts outlined
in this chapter to enhance predictive models of visual cortical neurons by better
characterizing their response distribution and deepen our understanding of their
functional properties.
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3 A flow-based latent state generative model
of neural population responses to natural
images

This chapter is based on the following publication:

• Mohammad Bashiri*, Edgar Walker*, Konstantin-Klemens Lurz, Akshay
Jagadish, Taliah Muhammad, Zhiwei Ding, Zhuokun Ding, Andreas Tolias, and
Fabian Sinz. A flow-based latent state generative model of neural population
responses to natural images. Advances in Neural Information Processing Systems,
34:15801–15815, 2021.

3.1 Motivation: characterizing neural responses be-
yond stimulus-driven factors

This project aims to model visual sensory neuron activity beyond sensory input-driven
factors. While neural responses in the visual cortex vary with visual stimuli, they also
exhibit variability to repeated presentations of the same stimuli [86–89], referred to as
stimulus-conditioned variability. This stimulus-conditioned variability is often shared
(i.e. correlated) across neurons, giving rise to noise correlations [89–91], which has been
shown to be related to various factors such as the specific stimulus [92–94], behavioral
tasks [95, 96], attention [49–51], and the overall brain state [56, 97]. Recently, [13]
showed that around 21% of the total variability in neural responses of mouse visual
areas are driven by behavioral variables such as motor information.

In the presence of such non-stimulus-related factors, to gain a comprehensive un-
derstanding of the nature of such correlated stimulus-conditioned variability and its
functional implications in sensory stimulus processing, it is crucial to develop models
that can account for both stimulus-driven and shared stimulus-conditioned variability.
Our objective is to capture the stimulus-conditioned response distribution p(r|x) for n
neurons, which encapsulates both population activity r ∈ Rn and the underlying noise
correlations when responding to arbitrary sensory stimuli x. However, existing models
have predominantly focused on either stimulus-driven activity or stimulus-conditioned
correlated variability independently, limiting our ability to accurately capture the joint
distribution of neural responses given a stimulus.

Existing Deep Neural Networks (DNNs) excel in modeling stimulus-driven activity but
often neglect stimulus-conditioned correlations [17, 19, 21, 23, 98, 99], and can even
generate stimuli that yield desirable neural responses [9, 10]. However, current state-of-
the-art DNN-based models commonly neglect stimulus-conditioned correlations among

*Equal contribution
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neural responses, assuming independence and imposing strong assumptions about the
form of the marginal distribution for each neuron, typically a Poisson distribution.

On the other hand, many methods exist for modeling stimulus-conditioned variability.
A common approach has been to capture the stimulus-conditioned variability via a,
typically much lower-dimensional, shared latent space: z: p(r|x) =

∫
p(r|x, z)p(z|x) dz

[56, 57, 61, 65, 100–104]. While these approaches present powerful methods to capture
stimulus-conditioned variability, they often suffer from several limitations. One of
the limitations is that many of these models capture the conditional distribution
p(r|x) separately for each stimulus x [56, 57, 61, 104, 105]. These models, therefore,
require multiple stimulus presentations for fitting and struggle to generalize to novel
stimuli. Furthermore, due to their complexity, these models often either ignore
stimulus-driven variability altogether [65, 100, 103] or use simple stimuli such as
gratings [56, 57, 61, 101], resulting in additional limitations in their generalization,
especially to more complex stimuli such as natural images.

In an attempt to close the gap between these two approaches, in this project, we
presented a new model that combines DNN-based and latent variables models to
simultaneously capture stimulus-driven as well as stimulus-conditioned variability. We
show that the resulting model accurately predicts the distribution of neural responses
to unseen stimuli, without the need for repeated presentations to learn stimulus-
conditioned variability. Furthermore, we show that our model infers latent state
structures with meaningful relations to behavioral variables such as pupil dilation as
well as other functional and anatomical properties of visual sensory neurons.

3.2 Method
To account for the shared variability between neurons we employ Gaussian Factor
Analysis (FA) as a latent variable model, while the stimulus-dependence is captured
via a DNN that learns to shift the mean of the FA model based on the stimulus. As
described in section 2.2.1, FA model assumes the data is distributed according to a
Gaussian distribution with a particular low-rank covariance matrix structure. However,
neural responses are not Gaussian-distributed, which limits the direct application of
FA model to population activity. To address this limitation, variance-stabilizing trans-
formations, such as the square-root function, have been used in the past to make the
responses more Gaussian-distributed [56, 65]. However, other transformations, which
are not necessarily identical among neurons, may capture the response distribution
more accurately. To this end, here we employ Normalizing Flows (section 2.2.2) to
learn a marginal transformation such that the transformed responses are marginally
distributed according to a Gaussian distribution (Figure 3.1a).

3.2.1 Flow-based factor analysis model
Considering population response r ∈ Rn to a given stimulus x, we define our normalizing
flow-based factor analysis (FlowFA) model as:

p(r|x, θ, ϕ) = N (
︷ ︸︸ ︷
Tϕ(r); fθ(x)︸ ︷︷ ︸, CC︸︷︷︸

⊤ +Ψ) · |det∇rTϕ(r)| . (3.1)

transformed responses

output of the CNN low-rank shared covariance

independent noise
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The effect of the stimulus x on the responses is captured by the mean of the FA
distribution that depends on the stimulus, modeled by a deep network fθ(x) ∈ Rn

with learnable parameters θ (Fig. 3.1a,b). And the statistical dependencies between
neurons (i.e. noise correlations) are captured via CC⊤ where C ∈ Rn×k is the so-called
factor loading matrix that maps samples from the k-dimensional latent space onto the
n-dimensional neural space. Note that the FA model is applied on the transformed
responses v = Tϕ(r), where Tϕ is a marginal normalizing flow: we learn a simple
learnable monotonic transformation for each neuron separately. Following the change
of variables formula, to construct a proper density over r we introduce the absolute
determinant |det∇rTϕ(r)| of the jacobian ∇ of Tϕ with respect to r into Eqn. 3.1.

3.2.2 Zero-inflated flow-based factor analysis model
Neural responses recorded via two-photon Calcium imaging often contain a large
portion of zeros, leading to a zero-inflated distribution [106]. To avoid potential
problems (e.g. overfitting to the peak at zero) due to this phenomenon, we extend
FlowFA to a mixture model that models neural responses below and above a threshold
value ρ with two separate, non-overlapping distributions. The peak at zero is captured
by modeling the responses below the threshold (i.e. “zero” responses) using a uniform
distribution, while FlowFA is used to capture responses above the threshold:

p(r|x) =


 ∏

{i:ri≤ρ}

1− qi (x)

ρ


·


 ∏

{i:ri>ρ}
qi (x)


·N (Tϕ(r+); fθ,+(x),C+C

⊤
++Ψ+)·|∇Tϕ(r+)| , (3.2)

where qi(x) is the probability of the response being above the threshold ρ and is
modeled as a function of the stimulus via a DNN fθ. r+ and fθ,+(x) are the sub-
vectors, and C+ and Ψ+ are the sub-matrices, corresponding to responses above the
threshold, and θ, C, Ψ are the same as in Eq. (3.1).

3.3 Results
First, we applied the FlowFA model to synthetic data and showed that it faithfully
recovers invertible transformations. While these results and their detailed description
can be found in Manuscript 1, here I will focus on the findings when we applied our
model to real neuronal responses. These responses were recorded via a two-photon
microscope, from two mice while they were presented with grayscale natural images,
spanning three visual areas: primary visual cortex (V1) and lateromedial area (LM)
in one mouse (referred to as “scan 1”); V1 and posteromedial area (PM) in another
mouse (referred to as “scan 2”). More details about the dataset and how the models
were fitted to the data can be found in Manuscript 1.

3.3.1 Capturing cortical response distribution
We trained the flow-based models (ZIFFA, FlowFA) on population responses for differ-
ent values of latent dimensions k ∈ {0, 1, 2, 3, 10}, and compared the results against
multiple control models: 1) flow-based model with fixed transformation (FixedFA) to
assess the importance of learnable transformation, and 2) models based on Poisson
[21, 98] and Zero-Inflated Gamma [106] distributions to show the importance of the
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Figure 3.1: Flow-based Factor Analysis model. a: Schematic of the flow-based model
relating all relevant variables. b: Schematic of the sub-network used by the image-
computable model (i.e. DNN) to map cortical positions into receptive field positions.
Refer to the Method section of Manuscript 1 for the details. The figure is reprinted
from [22].

distribution choice. These controls have previously been successfully applied on neural
responses [21, 106] and have an important distinction compared to the Flow-based
models: they assume independence among neurons. Importantly, when the number of
latent dimensions in the flow-based models is set to 0, all models assume independence
among neurons. We measured the model performance by computing the log-likelihood
as well as the conditional correlations. Importantly, the prediction used for comput-
ing conditional correlations not only was conditioned on the image but also on the
responses of all the other neurons to that same image. This allows the model to take
advantage of the dependencies between neurons learned by the latent variable model.

The ZIFFA model outperformed all other models in terms of log-likelihood and
with an increasing number of latent dimensions its performance consistently and
considerably improved beyond the control models that assume independence among
neurons (Fig. 3.2a). Interestingly, we observed that the ZIFFA model exhibited
slightly lower correlation performance compared to models with fixed transformations,
reflecting that a higher likelihood does not necessarily correspond to a higher correlation.
Additionally, the ZIFFA model outperformed all FixedFA models in terms of likelihood,
which underscores the importance of neuron-specific learnable transformations in
accurately capturing the distribution of neural responses (Fig. 3.2b). Overall, the
results suggest that the ZIFFA model is able to capture the (marginal) neural response
distributions more accurately than other models while at the same time learning and
taking advantage of the statistical dependencies between neurons.

3.3.2 Uncovering biological insights from the model
We now explore the utility of our model in uncovering potential biological insights. All
following analyses were performed on the trained ZIFFA model with a 3-dimensional
latent state.
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Figure 3.2: Comparison of models trained on the mouse visual cortical population
responses to natural images. a: log-likelihood computed for models trained on scan
1 (left panel) and scan 2 (right panel). Values for both individual (lighter shade)
and average (darker shade) performance of a model trained under various random
seeds are shown. The gray block provides a zoomed-in view of the ZIFFA, FlowFA,
and Zero-Inflated-Gamma (ZIG) models. b: Neuron-specific transformations learned
by the flow-based models (ZIFFA in green, average across neurons in light green;
FlowFA in pink, average across neurons in light pink) shown in comparison to fixed
transformations. c: Conditional correlation. The format is similar to a. The figure is
reprinted from [22].

Model-based visual area identification Multiple visual areas in mice exhibit
retinotopies that demonstrate a flipped relationship between each other [107]. In simple
terms, this implies that when a point traverses the cortical surface and crosses the
boundary between two flipped areas, its corresponding point in visual space reverses its
direction of movement. Our model incorporates a component network, called readout
position network, that effectively predicts the location of each neuron’s receptive
field (RF) δ as a function of its cortical location ∆ (Fig. 3.1b). In other words, the
readout position network learns the mapping from neurons’ location on the cortex to
their RF location in the visual field. Here we show that this learned mapping can
be used to detect distinct visual cortical areas. To this end, we examined the sign
of the determinant of the Jacobian matrix det ∂δ

∂∆
, which describes the relationship

between RF positions and cortical positions. If the determinant of the jacobian has a
negative sign it means the direction of movement in the visual field is flipped w.r.t the
changes in the cortical position, and it is not flipped if the sign is positive. Finally,
comparing the resulting sign across different areas reveals distinct areas identified by
the learned mapping. A comparison between the areas identified by our model and the
experimentally identified areas reveals a highly accurate correspondence (see Fig. 3.3a,
left vs. right panels). Notably, these findings suggest that our model could enable
the identification of distinct visual areas solely through the analysis of responses to
natural images, eliminating the need for additional experiments dedicated to area
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identification.

Latent variables are related to behavioral, functional, and structural factors
In the subsequent analyses, we delved into the latent states and their associations with
various behavioral variables, as well as the anatomical and functional characteristics
of visual sensory neurons. First, we inferred orthonormalized latent states which
are uniquely ordered based on the extent to which each latent dimension accounts
for response variability (see 2.2.1 and Manuscript 1 for detailed explanations) and
compared them to the behavioral variables recorded during the experiment. Notably,
the orthonormalized latent states inferred from the ZIFFA model exhibited strong
correlations with behavioral variables, including pupil dilation (Fig. 3.3d), which
aligns with prior research using pupil dilation as a surrogate measure for arousal and
attention [108–112]. Interestingly, pupil dilation correlated most strongly with the
second latent dimension which was consistent not only across models initialized and
trained with different random seeds but also across the two mice with R2 values of 0.53
(p < 0.001, two-tailed test for significance of correlation [113]) and 0.63 (p < 0.001)
for scan 1 and scan 2, respectively, comparable to values previously reported [13]. The
substantial correlation observed between the latent states and established indicators
of global brain state, such as pupil dilation, implies that the latent model effectively
captures meaningful dependencies and shared factors within the neural population.

Next, we explored whether the effect of the latent states on the neurons, captured by
the factor loading matrix C, is related to their cortical or RF positions. To this end,
we plotted the sign and magnitude of the weights mapping from the latent state to
each neuron on the cortical position (Fig. 3.3b) or the RF positions of the neurons
(Fig. 3.3c). We observed that while some dimensions exhibit a rather global effect
across different visual areas (Fig. 3.3b: dimension 1 for both scans), the effect of
some other latent dimensions varies systematically across brain areas where the latent
dimension has generally opposite effect on different areas (Fig. 3.3b: dimension 2 for
both scans). Additionally, we observed a differential effect of some latent dimensions
where the effect seemed to vary as a function of RF or cortex position within each
area (Fig. 3.3c: dimension 3 for both scans).

While conclusive biological interpretations would require additional rigorous experi-
ments and analyses, our results illustrate the utility of our model for uncovering the
functional and structural implications of the behavioral or internal processes associated
with the inferred latent states.

3.4 Discussion
Bridging the Gap in Sensory Neuron Modeling In this project, we developed
a model that addresses an important gap in the field: a predictive model that si-
multaneously accounts for both stimulus-driven and stimulus-conditioned variability
in neural responses. Our model combines state-of-the-art DNN-based models with
a flow-based factor analysis model, allowing us to evaluate the exact likelihood of
neural responses, easily sample stimulus-conditioned responses, and efficiently compute
conditional and marginal distributions of subsets of neurons. Using the activity of
thousands of neurons from multiple areas of the mouse visual cortex in response
to natural images, we trained a model that achieves state-of-the-art performance
in capturing the distribution of neural responses. Importantly, it also yields latent
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states that have meaningful relations to behavioral variables, as well as anatomical
and functional properties of visual sensory neurons. This directly addresses a gap in
modeling the activity of sensory neurons by integrating both sensory input and internal
processes into a unified predictive framework, thereby providing a foundational step in
understanding how internal states and behavioral variables affect neural responses.

Limitations and future extensions Our proposed method has two potential
limitations. Firstly, we used simple learnable marginal transformations to transform
neural responses, aiming to align their distribution more closely with a Gaussian
distribution. However, alternative approaches, such as neural spline flows [74], could
potentially yield improved outcomes by employing more expressive transformations.
Secondly, while the learned transformation implicitly incorporates a relationship
between the noise correlation structure (covariance matrix) and the stimulus through
the learned transformation, an explicit dependency could be a valuable future extension
of our methodology. It is worth considering that using a joint transformation that
operates on all neurons simultaneously may enhance overall performance, but it may
also impose limitations on other aspects of the model, such as the ability to compute
conditional densities. Additionally, employing a joint flow could potentially account for
some of the dependencies among neurons, thereby impacting the information content
and interpretability of the accompanying latent variable model in capturing statistical
dependencies.
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Figure 3.3: Analysis of the ZIFFA model with 3-dimensional latent state (k = 3). a:
Model-based area identification from responses of visual sensory neurons to natural
images. Left panel (Cortex positions): cortical position of the recorded neurons
color-coded by experimentally identified areas (green: V1; blue: LM; orange: PM).
Middle panel (RF positions): learned receptive field position for each neuron as a
function of cortical positions color-coded by experimentally identified areas. Right
panel (Model-based area identification): visual areas identified via the model by
computing the determinant of the relative changes in RF position with respect to
changes in cortical position; blue color shows negative determinant (i.e. mirrored visual
field representation) and red color shows positive determinant (i.e. non-mirrored visual
field representation). b–c: Distribution of the latent-to-neuron weights across cortical
positions (b) and receptive field positions (c). d: Pupil dilation (black) and the inferred
latent states (red) across trials from the test set. R2 values are computed between the
inferred latent state and the pupil dilation. The figure is reprinted from [22].
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4 Learning invariance manifolds of visual sen-
sory neurons

This chapter is based on the following publication:

• Luca Baroni*, Mohammad Bashiri*, Konstantin F Willeke, Ján Antolík, and
Fabian H Sinz. Learning invariance manifolds of visual sensory neurons. In
NeurIPS Workshop on Symmetry and Geometry in Neural Representations, pages
301–326. PMLR, 2023.

4.1 Motivation: neural system identification through
the lens of invariances

In the previous chapter, I described how we used a latent variable model applied to
neural responses to capture their distribution more accurately and used the resulting
model to gain biologically-relevant insights about the visual sensory neurons. In this
project, we adopt an alternative latent variable model tailored to the stimulus space,
aiming to elucidate the feature selectivity and invariances that visual sensory neurons
exhibit in response to varying stimuli.

Reliable and robust object recognition is believed to require neural mechanisms that
exhibit selectivity towards certain stimulus features while maintaining invariance to
others, such as spatial location or rotation. Such mechanisms enable animals to
generalize their visual capabilities to various transformations such as different viewing
conditions and contexts. In order to gain a better understanding of the computational
mechanisms that underlie the robustness and generalizability of the biological visual
systems, it is thus important to identify the features that strongly drive neural activity
and uncover the specific transformations of these features that do not alter neural
responses, known as single cell invariances. A prominent example of a transformation
that many visual sensory neurons (i.e. complex cells) are invariant to is phase
transition [6]. Importantly, this discovery, like many other discoveries of invariances
in the past [114–116], has typically relied on a hypothesis-driven approach that
involves presenting carefully chosen stimuli based on the intuition of the experimenter.
Considering the immense dimensionality of images and the constraints of experimental
time, this approach quickly becomes impractical especially when dealing with higher-
level areas where the encoding of visual information becomes more complex.

An alternative approach is to take advantage of the powerful DNN-based predictive
models of the visual system. Several studies have recently used these models to find
single [9, 10, 24] or multiple [47] maximally exciting inputs (MEIs) for visual sensory
neurons. However, existing methods solely identify a discrete collection of stimuli
*Equal contribution

31



CPPN

 

Image
space

Model neuron

+

Input
image

Complex Cell

latent input

Ac
tiv

at
io

n

latent 
input

Figure 4.1: Our method uses a CPPN to map a simple low-dimensional latent space
onto a complex high-dimensional manifold in the image space. Images from this
manifold result in diverse but maximally exciting stimuli for a model neuron. Here we
show a schematic of this method applied to a complex cell. Corresponding activations
for a simple cell are also added as reference. The figure is reprinted from [28].

from the underlying invariance manifold, which limits their utility for generating new
images that are different from the other images but still belong to the same manifold.
Considering the high dimensionality of images, understanding how such discrete points
in the image space are connected can be highly non-trivial, especially in higher visual
areas as there may exist multiple transformations that neurons are invariant to.

In this project, we developed a data-driven method that identifies a manifold in the
stimulus space along which all images maximally, and equally, activate a target visual
sensory neurons. We refer to this manifold as the MEI invariance manifold (or simply
invariance manifold). Our method is based on Implicit Neural Representation (INR)
models [77, 80, 117] which provide a reparameterization of an image, and contrastive
learning [118] which encourages the resulting manifold to capture the true underlying
manifold. The main advantages of our method compared to existing methods are two-
fold: our method 1) is a data-driven approach which allows us to identify unexpected
and novel invariances, and 2) uses a generative approach which allows us to generate
and experiment with new images that lie on the same invariance manifold.

4.2 Method

While previous approaches directly optimized pixel values to identify MEIs, here we
use INRs to optimize a reparameterized version of the image (Fig. 4.1). In the context
of image generation, INRs are artificial neural networks mapping pixel positions (x, y)
to pixel RGB (or grayscale) values. These models have recently gained a lot popularity
in the computer vision community as implicit representations of shapes and radiance
fields [77, 78, 80]. While using INRs allows us to learn a manifold in the image
space, there are no guarantees that the generated images are diverse and the resulting
manifold spans a reasonable extent of the true underlying manifold. In other words,
the INR can collapse into a single point in the image space or learn a limited range
of the true underlying manifold. To circumvent this limitation we use a contrastive
learning objective to encourage diversity among the generated images.
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4.2.1 Learning invariance manifold via implicit neural repre-
sentations

Our goal is to use an INR as a generative model that generates multiple images. To
facilitate this, we extend the INR’s input space by incorporating additional latent
dimensions, denoted by z. This allows the model to generate different images for
different values of z even though it is being fed the same pixel coordinates [77]. We
implemented the INR as a fully connected network with 8 hidden layers, where each
layer contained 15 units and was followed by a batch normalization and a leaky ReLU
nonlinearity. The output layer of the INR model had a single unit followed by a Tanh
nonlinearity resulting in grayscale images bounded between −1 and +1.

Positional encoding To allow control over the characteristic spatial frequency of the
patterns generated via INR model, instead of directly using pixel positions as input to
the model we used positional encoding of the pixel positions, which we obtained via
Fourier mapping [80, 119] (for details please refer to Manuscript 2).

Latent state topology Similar to the diversity of patterns encoded by neurons the
transformations that the neural population is invariant to can be diverse. For instance,
one neuron could be invariant to phase (e.g. phase invariance in complex cells) while
another neuron is invariant to the angle (e.g. rotation invariance). Additionally, similar
to mixed selectivity observed in higher visual areas, neurons can show invariance to
multiple transformations (e.g. phase and angle). In this work, we investigated the
manifold’s topology in two aspects: 1) the number of transformations it accommodates,
and 2) the periodic or non-periodic nature of the manifold’s geometry. In particular,
we considered 1D and 2D latent spaces as well as non-periodic (corresponding to a line
or sheet topology) and periodic (corresponding to a circle or torus topology) boundary
conditions for the latent space.

4.2.2 Encouraging diverse MEIs via contrastive learning
Images generated by the INR model gϕ must satisfy two criteria: 1) they all should
maximally activate a target neuron, and 2) they should be as different as possible from
each other to ensure that the learned manifold reasonably spans the true underlying
invariance manifold. Therefore, the full objective contains two terms:

L = Lact + Lcontrastive

The first term is the activation of the target neuron as predicted by the neural encoding
model fθ:

Lact = fθ(gϕ(zi)) ·
1

αMEI
(4.1)

where zi ∈ RD is a single point from a grid of values covering a D-dimensional latent
space. We divide the resulting activation by the target neuron’s MEI activation,
resulting in a maximum value of 1 for Lact. Note that the only learnable parameters
here are ϕ, the parameters of the INR model. By maximizing this objective we ensure
that the generated images maximally activate the target neuron.

The second term, which is based on soft nearest neighbor contrastive objective [120, 121],
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Figure 4.2: Invariances generated from equally spaced points in a periodic 1D latent
space in the case of a complex cell (A) and of an orientation invariant neuron (B) and
activation values to different images in the corresponding learned manifold. The figure
is reprinted from [28].

encourages diversity across the generated images:

Lcontrastive = c · log
1
N+

∑
zj∈Z+

exp(sim(gϕ(zi), gϕ(zj))/τ)
1
N−

∑
zk∈Z− exp(sim(gϕ(zi), gϕ(zk))/τ)

, (4.2)

where Z+ is a set of positive images generated using the points in the latent space
that are close to the anchor grid point zi and Z− is a set of negative images that are
generated from points further from zi (see Manuscript 2 for details). We used cosine
similarity to measure the similarity between two images, where τ is the temperature
parameter that controls the diversity of the generated images, and c controls the
contribution of the contrastive objective to the complete objective. Optimizing this
objective ensures that images in the positive set resemble each other, while those in
the negative set diversify, thereby encompassing a broader section of the invariance
manifold. As the final step, we average across all grid points in the latent space,
resulting in the complete objective function which we maximize during training:

L =
1

ND

∑

zi∈Z

(
fθ(gϕ(zi))

αMEI
+ c · log

1
N+

∑
zj∈Z+

exp(sim(gϕ(zi), gϕ(zj))/τ)
1
N−

∑
zk∈Z− exp(sim(gϕ(zi), gϕ(zk))/τ)

)
, (4.3)

where D is the number of latent dimensions and N is the number of points per
dimension, resulting in a total of ND points in the latent space.

4.3 Results
We tested our method on simple Gabor-based model neurons with known and exact1
invariances as well as DNN-based predictive models of neural responses in macaque
primary visual cortex. For simulated neurons, we considered Gabor-based models
that are either invariant to a single transformation (e.g. phase or rotation) or to two
transformations (i.e. phase and rotation). While here I discuss the main results of the
project, additional complementary results and analyses can be found in Manuscript 2.

4.3.1 Learning invariance manifolds with 1D and 2D latent
spaces

Invariance to a single transformation To test whether the method can capture
single invariances we applied it to model neurons that elicit either phase-invariance
1neurons with “exact” invariances show the same level of responsiveness to all the images generated
from the invariance manifold.
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or rotation-invariance. These model neurons were constructed by max-pooling across
the responses of several simple cell models. For instance, the rotation-invariant model
was constructed by max-pooling across multiple model neurons where each neuron
was tuned to a different angle. For these neuron models, our method identifies the
invariance manifold almost perfectly (Fig. 4.2) and the values of the latent input
correspond to the angle characterizing the invariance.

Note that, in a real scenario, where we apply the method to biological neurons, the
number of transformations that a neuron is invariant to is not known. Consequently,
it is possible that a neuron is invariant to more transformations than the model can
capture. For instance, consider learning the invariance manifold of a neuron that is
invariant to changes in both phase and rotation with a model that has a 1D latent
space. What invariance manifold would the model identify in this case? While in
this case, it is not possible to learn the complete underlying invariance manifold, in
Manuscript 2 Fig. S4 we show that our method still learns a meaningful submanifold
of the underlying higher-dimensional invariance manifold.

Invariance to multiple transformations Next we considered an INR model with
non-periodic and periodic 2D latent space, corresponding to a sheet and a torus
topology, respectively. We applied both of these latent space topologies on neuron
models with no invariances as well as 1D and 2D invariance manifolds (Fig. 4.3).
Ideally, when the dimensionality of the latent space is larger than the number of
transformations that a neuron is invariant to, the model should ignore the additional
latent dimensions and constraint the manifold to a number of latent dimensions that
are necessary to capture the invariance manifold. For instance, in the case where a
neuron has no invariance then a model with a 2D latent space should ignore both
dimensions and collapse the resulting images into a single point in the image space.

Our results show that not only the model learns to ignore latent dimensions that are not
needed for capturing the underlying invariance manifold, but when the dimensionality
of the latent space matches the dimensionality of the true invariance topology it
disentangles the latent space nearly perfectly. That is, it learns to associate a single
dimension in the latent space with a specific transformation in the image space. These
results are particularly relevant as they show the utility of our method in providing a
clear identification of the invariances and control over them via the latent space.

4.3.2 Learning invariance manifolds of macaque V1 complex
cells

Lastly, we applied our method with a 2D latent space on a DNN-based predictive
model of macaque V1 neurons (see Manuscript 2 for details about the neural encoding
model). We used an ensemble of ANNs as a model of macaque V1 neurons and applied
our method on complex cells that we identified using a nonlinearity index [16]. Fig. 4.4
shows that the INR identified phase invariance in the selected neurons: it generated a
variety of maximally exciting images resembling Gabor filters and parameterized their
phase transformation with one of the latent space dimensions while ignoring the other
dimension (Fig. 4.4E).

Note that, in contrast to the Gabor-based neuron models with exact invariances,
biological neurons cannot be expected to present exact invariances over maximally
exciting stimuli. Furthermore, our experiments here are performed on neural network
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Figure 4.3: Invariances learned with 2D latent space for different configurations of
latent space topology and topologies of the ground truth invariance manifold. The
figure is reprinted from [28].

models fitted to neural responses, which despite achieving high predictive performance,
are not perfect. Therefore, in the case of the biological neurons, a meaningful definition
of the MEI invariance manifold should be more forgiving. Nevertheless, overall, our
results demonstrate the utility of our method in identifying invariances of biological
neurons.

4.4 Discussion
Data-driven identification of invariance manifold In this project, we developed
a data-driven method that directly contributes to closing the gap in understanding the
complexity of encoding properties in visual sensory neurons. Our method combines
implicit neural representation models with a contrastive objective to learn an invariance
manifold in the image space. This manifold maximally excites a target neuron, allowing
us to characterize the complexity of their invariances. We tested our approach on both
simulated neurons and predictive models of macaque V1 complex cells and showed that
it successfully uncovers the invariance manifold in both cases. In contrast to previous
approaches, our method learns a smooth reparameterization of the invariance manifold
that allows generating new images from the manifold, and when a neuron exhibits
multiple invariances it learns to disentangle each transformation and associates it
with a different latent dimension. Furthermore, when there is a mismatch between
dimensionality Dmodel of the latent space and the dimensionality Dtrue of the underlying
invariance manifold it still yields meaningful results by either learning a submanifold
(when Dmodel < Dtrue) or ignoring unnecessary latent dimensions (when Dmodel >
Dtrue).

Limitations and future extensions Our study is limited by its focus on macaque
V1 complex cells, chosen to demonstrate proof of concept through well-established
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Figure 4.4: A: Nonlinearity index of macaque V1 neurons. Black circles highlight the
neurons shown in panels B–E. B–E: Phase invariances identified with periodic 1D
latent (B–D) and with 2D non-periodic latent(E) and corresponding activations. For
visualization purposes, MEIs are cropped around the receptive field of the neurons.
The figure is reprinted from [28].

invariances such as phase invariance. Despite this narrow scope, our systematic
approach can be adapted for more diverse neural populations and higher-level visual
areas, presenting exciting avenues for future research. One direction is to apply the
method on multiple neurons instead of a single neuron. For instance, by associating a
unique learnable fingerprint to each neuron, neurons could be clustered based on their
functional properties in this potentially low-dimensional fingerprint space. Similarly,
by modifying the objective function, which here was focused on learning invariances,
we can learn tuning direction in the image space where many neurons are tuned to a
specific input generated from the same manifold shared across all neurons. Furthermore,
applying our method to higher visual areas where neurons are potentially invariant
to multiple, and more complex, transformations allows us to compare areas based on
their invariances and investigate how simple invariances in primary visual areas give
rise to complex invariances in higher visual areas.
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5 Bayesian oracle for bounding information
gain in neural encoding models

This chapter is based on the following publication:

• Konstantin-Klemens Lurz*, Mohammad Bashiri*, Edgar Y. Walker, and
Fabian H Sinz. Bayesian oracle for bounding information gain in neural encoding
models. In International Conference on Learning Representations (ICLR), 2023.

5.1 Motivation: from correlation to full likelihood-
based evaluation metrics

In recent years, neural system identification has seen many advancements in building
neural encoding models, i.e. predictive models of neural activity [9, 11, 15, 16, 18,
21, 23, 122]. However, these models are most commonly evaluated using mean-based
measures, such as correlation or fraction of explainable variance explained (FEVE),
which are mainly focused on how well the model captures the conditional mean (i.e.
stimulus-driven variations in neural responses). Consequently, when evaluating these
models other aspects such as how well they characterize the stimulus-conditioned
variability are ignored. Importantly, this stimulus-conditioned variability is not just
noise and is often correlated among neurons giving rise to noise correlations [89–
91], which are known to be related to multiple behavioral and cognitive variables
[13, 22, 49–51, 56, 95–97].

Furthermore, many normative theories that link first principles to neural response
properties, such as the probabilistic population code [123] and neural sampling [124,
125], make predictions about the variability of neural responses around the mean
[96, 126, 127]. This calls for both developing models that capture more than just the
conditional mean, and devising evaluation metrics capable of appropriately assessing
these advanced models. Therefore, in this project, we focused on alternative measures
that allow us to evaluate neural encoding models not just based on how well they
capture the stimulus-driven variations in neural responses but also on other aspects
such as stimulus-conditioned variability.

Specifically, we focused on a likelihood-based evaluation metric which allows model
evaluation based on complete response distribution. In contrast to correlation which
is an interpretable measure since it is naturally bounded between −1 and +1, it is not
trivial to interpret likelihood values without putting them into context. Ideally, we
would want to normalize model likelihood such that it falls within an interpretable
range of values. There are additional reasons besides interpretability that make a
normalization to a bounded and interpretable scale desirable: 1) Assessing whether a
*Equal contribution
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model has achieved the best possible performance for a given dataset, and 2) comparing
models that are trained on different datasets, which due to noise can exhibit different
levels of achievable performance. To this end, Normalized Information Gain (NInGa)
[128] can be used, which uses an estimated lower and upper bound to put the model
likelihood on a meaningful and interpretable range. The challenge, however, is to
obtain such bounds for noisy neural responses.

Here, we propose a method for robustly estimating such bounds for neural responses.
We show how a naïve Point Estimate (PE) approach fails to yield a robust estimate,
especially for higher moments beyond the mean, due to several common characteristics
of recorded neural responses, namely few samples, sparsity of responses, and low
signal-to-noise ratio. To address this shortcoming, we propose a generalization of the
PE approach to a full Bayesian approach by using the posterior predictive distributions.
We show that the resulting approach is robust to all the above-mentioned complexities
of neural responses and we provide derivations for a variety of common distributions
including the state-of-the-art zero-inflated mixture models. Finally, by applying our
approach on zero-inflated mixture models of neural responses, we show that they
achieve around 90% of the maximum achievable performance.

5.2 Method

Consider neural response y to stimulus x with the conditional distribution p(y|x). In
order to evaluate a model likelihood p̂(y|x) in an interpretable fashion we can normalize
it using Normalized Information Gain (NInGa):

NInGa =
⟨log p̂(y | x)⟩y,x − ⟨log p0(y)⟩y,x
⟨log p∗(y | x)⟩y,x − ⟨log p0(y)⟩y,x

, (5.1)

where the Null model p0(y) is a marginal distribution over response y which does
not account for any stimulus-related information, and the Gold Standard (GS) model
p∗(y|x) reflects the best possible approximation of the true conditional distribution
p(y|x). Compared to the model under evaluation the GS model has access to more
information, such as responses to repeated presentations of the same stimulus. Using
these responses to the same stimulus we estimate the parameters of the GS model in
a leave-one-out fashion: given a set of n repeats, the GS parameters of a target repeat
i are estimated using the n− 1 other repeats \i.
As we will discuss below, the parameters of the GS model can be computed as point
estimates via moment matching. However, such a point estimate approach fails to yield
a robust estimate of the upper bound, mainly due to multiple characteristics of the
recorded neural responses: 1) low number of repeats because of limited experimental
time, 2) sparsity of responses, and 3) high signal-to-noise ratio. Note that the Null
model is not noticeably influenced by these limitations because it has many more
samples as it is not conditioned on the stimulus. In our specific experimental setup,
where each of the 1000 stimuli is presented 10 times, the Null model parameters are
estimated on 1000 samples, whereas each GS model is confined to a mere 10 samples
for its parameter estimation.
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Figure 5.1: Comparison of lower
and upper bound likelihood esti-
mates (Null vs GS) per neuron.
Left: For many neurons, the PE
approach yields worse GS than
the Null score, while the Bayesian
method results in the expected
outcome. Right: Two example
neurons where the PE method
fails (red) or succeeds (green).
The figure is reprinted from [29].

5.2.1 Naïve point estimate of the upper bound
Considering the upper bound estimate p∗(yi|y\i, x) = p(yi|θi) for a target repeat i,
parameterized by θi, we obtain a point estimate of θ using the n − 1 other repeats
as θi = f(y\i), where f represents moment matching. The conditioning on stimulus
x arises because the GS model’s parameters are estimated per stimulus, relying
exclusively on the corresponding neural responses y. For brevity, however, we will
drop the conditioning on x for the remainder of this manuscript.

To test the PE approach, we chose the model distribution p̂(y|x) to be a zero-inflated
Log-Normal (ZIL) distribution over real neural responses:

p̂(y|x) = (1− q(x)) · pu(y)︸ ︷︷ ︸
uniform

+ q(x) · Lognormal(y|µ(x), σ2(x), loc)︸ ︷︷ ︸
positive distribution on [τ,∞)

, (5.2)

where the mixing proportion q and the parameters µ, σ depend on x. Note that the
location parameter loc is the minimum value of the support range for the Log-Normal
distribution which is fixed loc = τ . Our goal is to obtain the GS model by estimating
the parameters θ = {q, µ, σ2} of the distribution using the PE approach (see [22, 106]
for details on zero-inflated distributions, and see Manuscript 3 for data description and
moment matching derivations). By definition, since the GS model is an estimate of
the upper bound, it should yield higher likelihood values compared to the Null model.
However, as depicted in Fig. 5.1 (black points), the PE approach yields an upper
bound (GS model likelihood) that for many neurons is lower than the lower bound
(i.e. Null model likelihood). The main reason for this effect is the sparsity of neural
responses. When coupled with the small sample size, this leads to an overconfident,
and thus biased, estimation of the GS model parameters, as illustrated by the two
example neurons in Fig. 5.1.

5.2.2 Bayesian to the rescue
To mitigate the issue of overconfidence inherent in the PE approach, we imposed
uncertainty (i.e. a prior) over the estimated parameters, and estimated the GS model
in a fully Bayesian manner via the full posterior predictive distribution:

p∗(yi|y\i) =

∫ ∞

−∞
p(yi|θ)︸ ︷︷ ︸
likelihood

p(θ|y\i)︸ ︷︷ ︸
posterior

dθ (5.3)
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Note that this is a generalized formulation where the PE approach corresponds to
a special case with p(θ|y\i) = δ(θ − f(y\i)). While for certain choices of likelihood,
with an appropriate choice of prior, the posterior predictive distribution has a closed-
form solution, in general the integral is intractable and solving it requires numerical
approximation. Here, we derived the posterior predictive distribution for zero-inflated
distributions and show that it boils down to a one-dimensional integral over q if the
posterior predictive distribution of the positive part p(yi|y1

\i) is known:

p(yi|y\i) =

{
p(yi|y0

\i) ·
∫
q
(1− q) · p(q|y\i) dq if yi < τ

p(yi|y1
\i) ·

∫
q
q · p(q|y\i) dq if yi ≥ τ

where y0
\i and y1

\i denote the set of zero and non-zero responses in y\i, respectively.
For detailed derivations refer to Manuscript 3.

5.3 Results
Here we provide a more thorough comparison between the PE and the Bayesian
approach by assessing their performance under different conditions, namely, different
number of samples as well as different levels of signal-to-noise ratio (SNR). As a final
step, we applied the complete Normalized Information Gain as an evaluation metric to
evaluate neural encoding models trained on responses recorded from the mouse visual
cortex.

5.3.1 Point estimate versus the Bayesian estimate
The analyses here were conducted on both simulated and real neuronal responses
recorded from the mouse visual cortex (refer to Manuscript 3 for a detailed description
of the data). Similar to the previous analyses, we chose the model distribution
to be a zero-inflated Log-Normal distribution with parameters θ = {µ, σ2, q} and
τ = exp(−10).

First, we assessed which parameters profit the most from the Bayesian approach by
comparing GS models where individual parameters of the distribution were either
estimated via the PE approach or the Bayesian approach. This analysis is especially
insightful when each parameter of the distribution corresponds to a different moment,
which is the case for the Log-Normal distribution. Our results show that the Bayesian
approach yields better estimates of the higher order moments (Fig. 5.2a).
Notably, estimating the variance σ2 via the Bayesian approach (Fig. 5.2a light blue bar)
results in a significant improvement compared to when both parameters are estimated
via the PE approach, while the contribution of Bayesian approach for the mean µ is
much less pronounced.

Next, we compared the two approaches for different numbers of samples and show that
the Bayesian approach is more data-efficient than the PE approach (Fig. 5.2b).
That is, as we decrease the number of samples the Bayesian approach incurs a smaller
decrease in the likelihood compared to the PE approach. The difference in the upper
bound likelihoods of these two approaches is especially apparent for lower number of
repeats, where the Bayesian approach outperforms the PE approach by a significant
margin.
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a

b

c

Figure 5.2: Comparison of the PE and Bayesian GS models. a: Different GS models
where the individual parameters are either estimated via the PE or the Bayesian
approach. The number of other repeats y\i is 19. Colors are the same as in b. b:
Similar to a but for different numbers of left-out repeats y\i. Left: Simulated data.
Right: Neural responses. c: Upper bound likelihood scores for different signal-to-noise
ratios and different number of left-out repeats y\i. In all panels, the likelihood values
are averaged over stimuli and neurons, and the error bars and shaded areas show SEM
over 5 random selections of the left-out repeats. The figure is reprinted from [29].

As different datasets can exhibit different levels of noise, we also tested the two
approaches on responses with varying levels of SNR. As shown in Fig. 5.2c, the
Bayesian GS is more robust to different SNRs. Similar to other results, the
difference between the two approaches is more pronounced when there are few repeats.
It is worth noting that in real experiments a commonly used number of repeats is 10,
which emphasizes the advantage of using our proposed method when dealing with
recorded neural responses.

5.3.2 Likelihood-based evaluation of neural encoding models
Now that we have established the superiority of the Bayesian approach compared to
the PE approach, we will only use the Bayesian approach when referring to the GS
model. Being able to estimate a robust upper bound, we are now equipped to use the
lower and upper bound estimates to evaluate neural encoding models via Normalized
Information Gain (Eq. 5.1).

To this end, we trained a model on responses recorded from mouse primary visual
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Figure 5.3: Evaluation of a zero-inflated Log-Normal neural encoding model trained
on real neural responses. a: A sub-optimal prior yields a GS model that performs
worse than the trained model (TM). b: An optimized prior results in a GS model
that outperforms the TM. The TM estimates all parameters similarly well. Greyscale
colors indicate models from the same distribution as the TM (ZIL) but with one or all
parameters matching the GS model. c: Normalized Information Gain (NInGa) for
the TM and the models (grey bars) from b. Values on top of the bars indicate the
likelihood per image and per neuron in bits. In all panels, the likelihood values are
averaged over stimuli and neurons, and the error bars and shaded areas show SEM
over 5 random initializations of the TM parameters. There are no errorbars on the
red, yellow, and dark grey bars since they do not involve a TM. The figure is reprinted
from [29].

cortex to natural images. The dataset contained a test set with 100 images each
repeated 10 times, resulting in n−1 = 9 other repeats y\i, which were used to estimate
the GS model parameters. Similar to previous sections we assume a zero-inflated Log-
Normal (ZIL) distribution over the responses and trained the model with a negative
log-likelihood objective (see Manuscript 3 for a detailed description of the data, model,
and training procedure).

Computing the posterior predictive likelihood requires a prior over the parameters of
the response distribution. First, we obtained the prior parameters simply by optimizing
a marginal distribution over all responses irrespective of which stimulus they belong
to. Since the GS model is an upper bound and has access to more information (i.e.
multiple responses to the same stimulus) compared to the trained model (TM), it must
yield a higher likelihood. However, we observed that the resulting GS model results
in a lower performance compared to the trained model (Fig. 5.3a). An alternative
approach is to optimize the prior such the likelihood of the GS model is maximized.
Optimizing the prior yields a GS model that outperforms the trained model (Fig. 5.3b),
as expected.

In order to investigate which parameters of the response distribution are captured
well by the trained model, we conducted an analysis similar to the one shown in
Fig. 5.2a. Specifically, we compared the likelihood of the trained model to cases where
we matched either one or all parameters to the GS model (Fig. 5.3b, blue vs. grey
bars). We observed that matching each parameter resulted in a slight improvement
in the performance of the trained model. Notably, the improvement was very similar
for all the parameters, implying that the neural encoding model captures all
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parameters equally well. As expected, matching all three parameters resulted in
a performance beyond matching any of the parameters individually. However, even
though we matched all the parameters, the performance did not match the GS model,
which can be explained by the difference in the distributional shape of the positive
part: Log-Normal for ZIL vs. Log-Student-t for the GS model.

Finally, we evaluated the trained model using the Normalized Information Gain and
show that the encoding model performs at 90% NInGa (Fig. 5.3c). When
using NInGa, the difference between the contribution of different parameters is more
pronounced and, in this case, it seems that future models can benefit from predicting
the parameter q better. We also performed additional analyses to show that using
NInGa enables model comparison across different datasets (see Manuscript 3).

5.4 Discussion
Advancing metrics for evaluating neural encoding models In this project, we
focused on applying improved metrics for evaluating the performance of neural encoding
models. With the increasing complexity of these models (e.g. using more complex
distributions to capture neural responses), there is a need for metrics that quantify the
performance of these predictive models on multiple aspects. Here, we argued for an
interpretable likelihood-based metric: Normalized Information Gain (NInGa), a metric
that puts model performance on an interpretable scale. Specifically, we focused on the
challenges of obtaining lower and upper bounds for NInGa. Our Bayesian approach to
estimating the upper bound provides a data-efficient and robust Generalized Sigmoid
(GS) model, particularly useful in high Signal-to-Noise Ratio (SNR) scenarios. Using
this robust upper bound, we evaluated current neural encoding models and found
that they capture the response distribution remarkably well, achieving up to 90%
NInGa. This project provides helpful practical steps to facilitate the adoption of such
likelihood-based metrics in the field to evaluate future neural encoding models.

Limitations and future extensions While our results show that the current neural
encoding models capture the response distribution well, the high NInGa scores could
potentially be due to a sub-optimal upper bound estimator, pointing to a need for
future work in refining this estimator. Additionally, our current approach assumes
independence across neurons and is not directly applicable to models that account
for statistical dependencies, such as the latent variable model discussed in chapter
3. However, the flexibility of the NInGa metric allows for future extensions to cover
such cases, offering a pathway for more comprehensive evaluations of neural encoding
models.
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6 Discussion and conclusion

In recent years, neural system identification has seen great advancements in building
predictive models of cortical population activity. Many of these advancements are
owed to the recent developments in machine learning, especially deep learning and
deep neural networks. In the past decade, these models have been utilized to obtain
powerful predictive models of the sensory neurons [21], characterize the structural
aspects of the visual system [11], and run experiments in silico that are infeasible
to conduct with the biological system, but whose results can be evaluated in vivo.
Following this research direction, in this thesis, I discussed three projects that show
how DNN-based models of visual sensory neurons can be used to generate insights
about the functional and structural properties of these neurons, as well as how internal
processes and behavioral variables affect the responses of these neurons beyond the
sensory input. Additionally, I discussed an important aspect of developing these
models which is concerned with finding better ways to evaluate such models based
on how well they capture the full distribution of neural responses as opposed to only
focusing on the mean.

While the primary goal of the visual sensory neurons is to encode visual stimuli, many
studies have shown that other factors such as behavioral variables or cognitive processes
(e.g. attention) can affect how these neurons respond to the sensory input [13, 49–
51, 56, 97]. Based on these experimental observations, in the first project we aimed at
developing a model that captures the variations is neural responses beyond those that
are induced by the visual stimulus. To this end, we combined state-of-the-art DNN-
based models with a simple, yet flexible, flow-based factor analysis model to account
for two major sources of variability in neural responses: stimulus-driven and stimulus-
conditioned. We showed that the resulting model not only captures the responses of
visual sensory neurons well but also, through learning the statistical dependencies
across these neurons, yields latent states that exhibit meaningful relations to behavioral
variables as well as anatomical and functional properties of visual sensory neurons.
Such models that can capture multiple aspects of cortical population responses can
lead to deeper scientific insights and a better understanding of how brains perceive
and compute with sensory information, and can eventually also provide insights into
how neurological and psychological disorders may disturb these functions.

One of the main goals of studying and understanding the visual system is to build
machines and algorithms (i.e. computer vision) that mimic the useful properties of
their biological counterpart. A key characteristic of visual perception is its robustness
and its ability to generalize despite significant variations in the environment. Such
ability is believed to require neural mechanisms that exhibit selectivity towards certain
stimulus features while maintaining invariance to others, such as spatial location or
rotation. Therefore, in order to gain a better understanding of the computational
mechanisms that underlie the robustness and generalizability of the biological visual
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systems, it is important to identify the features that strongly drive neural activity
and uncover the specific transformations of these features that do not alter neural
responses, known as single cell invariances. Focusing on invariances, in the second
project we set out to develop a model that learns a manifold in the stimulus space
such that images along this manifold equally and maximally excite a target neuron.
While in the past identification of invariances has commonly been a hypothesis-driven
process relying on the presentation of carefully selected stimuli, our method is designed
to be data-driven, which allows us to identify unexpected and novel invariances. In
addition, it uses a generative approach which allows us to generate and experiment
with new images that lie on the same invariance manifold. We believe that such an
approach not only can yield important insights into the coding properties of visual
sensory neurons but also provides ideas that can inspire more robust computer vision
algorithms.

Finally, the utility of DNN-based models as digital twins of the biological visual system
depends on how well they capture and represent neural responses recorded from the
brain. Therefore, prior to using these models as tools for generating insights about
the brain, it is crucial to ensure that they represent the functional properties of their
biological counterpart well. This requires the development of evaluation metrics that
take into account as many aspects of the neural responses as possible. As I discussed in
chapter 5 a good candidate for this purpose is Normalized Information Gain (NInGa)
which is an interpretable likelihood-based evaluation metric. In the third project,
we focused on the theoretical and practical aspects of using NInGa, in a robust and
data-efficient manner, for evaluating predictive models of visual sensory neurons.

Overall, this thesis focused on three important aspects of neural system identification:
1) the development of models that consider multiple factors influencing neural responses,
2) the demonstration of how these models can generate insights into the functional
and structural properties of visual sensory neurons, and 3) the development of robust
metrics for better model evaluation. These contributions extend beyond the immediate
field, offering valuable insights for both neuroscience and machine learning. By refining
models and metrics, we take meaningful steps toward a better understanding of
the complex computations carried out by the brain, as well as how these can be
approximated in computational frameworks. These advancements have the potential
to inform a range of applications, from enhancing neurological diagnostics to advancing
intelligent systems. My hope is that the methods and insights presented in this thesis
will serve as a useful resource for future research at the intersection of neuroscience
and machine learning.
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Abstract

We present a joint deep neural system identification model for two major sources
of neural variability: stimulus-driven and stimulus-conditioned fluctuations. To
this end, we combine (1) state-of-the-art deep networks for stimulus-driven activity
and (2) a flexible, normalizing flow-based generative model to capture the stimulus-
conditioned variability including noise correlations. This allows us to train the
model end-to-end without the need for sophisticated probabilistic approximations
associated with many latent state models for stimulus-conditioned fluctuations. We
train the model on the responses of thousands of neurons from multiple areas of
the mouse visual cortex to natural images. We show that our model outperforms
previous state-of-the-art models in predicting the distribution of neural population
responses to novel stimuli, including shared stimulus-conditioned variability. Fur-
thermore, it successfully learns known latent factors of the population responses
that are related to behavioral variables such as pupil dilation, and other factors
that vary systematically with brain area or retinotopic location. Overall, our model
accurately accounts for two critical sources of neural variability while avoiding
several complexities associated with many existing latent state models. It thus
provides a useful tool for uncovering the interplay between different factors that
contribute to variability in neural activity.

1 Introduction

Characterizing the activity of sensory neurons is a major goal of neural system identification. While
neural responses in the visual cortex vary with visual stimuli, they also exhibit variability to the
repeated presentations of identical stimuli [1–4]. This stimulus-conditioned variability has significant
and sophisticated correlations among neurons commonly referred to as noise correlations [4–6]
and exhibits dependency on various factors such as the stimulus [7–9], the behavioral task [10, 11],
attention [12–14], and the general brain state [15, 16]. Understanding the nature of this correlated
variability and its functional implication in the processing of sensory stimuli requires models that
account for both stimulus-driven and shared stimulus-conditioned variability. The goal is thus to
model the stimulus-conditioned response distribution p(r|x) of population activity r ∈ Rn over n
neurons responding to an arbitrary sensory stimulus x. However, models that account for stimulus-
driven and stimulus-conditioned correlated variability have been developed largely independently.
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In the recent decade, we have seen significant progress in modeling stimulus-driven activity, largely
driven by the use of deep neural networks (DNNs) [17–22]. Typically, the expected response of the
neurons conditioned on the stimulus is captured as a function of the stimulus via a deep network
fθ(x) = E[r|x] with learnable parameters θ. These models can therefore predict how population
responses depend on an arbitrary stimulus, and could even be used to derive stimuli that would yield
desirable responses [23, 24]. Typically, these networks are trained using Poisson-loss, assuming
that the population activity r is distributed around the stimulus-conditioned mean fθ(x) with an
independent Poisson distribution. Therefore, existing state-of-the-art networks commonly ignore
stimulus-conditioned correlations among neural responses, and impose strong assumptions about
the form of the marginal distribution (i.e. Poisson) for each neuron. As sensory populations are
known to exhibit noise correlations and deviate from Poisson distributions [4, 25, 26], this conditional
independence assumption might limit the ability of these models to accurately capture p(r|x).

On the other hand, many of the existing models for stimulus-conditioned variability capture the
variations in the population activity by specifically modeling the responses to repeated presentations
of an identical stimulus. Many of these approaches employ statistical techniques such as maximum-
entropy or copula distributions to reduce the number of parameters needed to fit the target distribution
[27–29]. A popular approach has been to describe the stimulus-conditioned variability in terms
of a typically lower-dimensional shared latent state z: p(r|x) =

∫
p(r|x, z)p(z|x) dz [16, 25,

26, 30–35]. Among these are hierarchical generative models that can capture more sophisticated
relationships between the stimulus and noise correlations, as well as deviations from Poisson, such as
over-dispersion [25, 26, 32, 34, 35]. While these approaches present powerful methods to capture
stimulus-conditioned variability, they often fit p(r|x) separately for each unique stimulus and require
responses to repeated presentations of the stimulus [16, 25, 26, 29, 35]. This limits their ability
to yield predictions to a novel stimulus without requiring some stimulus-specific parameters to be
learned. Furthermore, the increased complexity of the distribution usually requires a substantially
more involved probabilistic machinery to make latent state inference and parameter fitting feasible.
Consequently, most latent state models for neural data either ignore stimulus-driven variability
altogether [30, 31, 34], or employ a very simple model of stimulus-driven variations [16, 25, 26, 32].

Here, we propose a new model that closes the gap between these two approaches by combining DNN-
based models of stimulus-driven activity with a latent state model that accounts for shared stimulus-
conditioned variability. While DNNs can be trained effectively via gradient-based optimization, the
challenge is to avoid the complex probabilistic machinery associated with existing latent state models,
particularly those that require stimulus-specific parameters to be learned over repeated presentations
of identical stimuli. To this end, we combine normalizing flows [36–41] with Gaussian Factor
Analysis (FA) models [42], where the stimulus-dependence occurs through a DNN that learns to
shift the mean of the FA distribution based on the stimulus. FA models make use of multivariate
Gaussian distributions with a particular low-rank structure of the covariance matrix. While the
use of FA in capturing shared variability greatly simplifies inference and learning, it is not directly
applicable to neural responses because neural responses are not Gaussian-distributed, particularly
for low firing rates. To circumvent this problem, variance-stabilizing transformations, such as the
square-root function, have been used in the past to make the responses more Gaussian-distributed
[16, 30]. However, there may be other transformations that capture the response distribution more
accurately. Furthermore, since the transformation for one neuron may not be applicable to other
neurons, ideally it would be learned for each neuron separately. To achieve this flexibility, we allow
our model to learn neuron-specific transformations with a marginal normalizing flow.

Normalizing flow models are density estimators that use a series of diffeomorphisms to transform
the source density underlying the data into a simple distribution—typically an isotropic Gaussian
of the same dimension. These transformations are usually chosen to have efficient-to-compute
log-determinants, and typically act on the entire variable vector to capture any statistical dependencies
between the dimensions. Here, we replace the isotropic Gaussian with an FA model to capture
dependencies among dimensions and only use diffeomorphisms that act on each dimension separately,
i.e. apply flow-based transformations on the marginals only. While this choice places certain
restrictions on the complex dependencies between neurons that may be captured (refer to section 4
Discussion for details), it has two important advantages: (1) The generative model is easy to train
while combining state-of-the-art deep networks with flexible latent state models, and (2) the use of
marginal flows allows for an easy mechanism to compute conditional distributions of one neuron
given responses of other neurons that would not be easy to obtain with non-marginal flow models.
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field positions. Refer to
section 2 Methods for the
details.

In summary, we make the following contributions. We (1) combine state-of-the-art DNN-based
models with flow-based latent state models to jointly account for stimulus-driven and shared stimulus-
conditioned variability in neural population activity. Our model can predict the distribution of neural
responses to unseen stimuli, without the need for repeated presentations to learn stimulus-conditioned
variability. We (2) apply our method on the activity of thousands of neurons in response to natural
images, recorded via two-photon Calcium imaging from multiple areas of the mouse visual cortex. We
demonstrate that our model outperforms current state-of-the-art methods in capturing the distribution
of responses. Finally, we (3) show that our model infers latent state structures with meaningful
relations to behavioral variables such as pupil dilation as well as other functional and anatomical
properties of visual sensory neurons.

2 Methods

2.1 Models

Flow-based Factor Analysis model (FlowFA) For a given stimulus x and population response
r ∈ Rn, where n is the number of neurons, we define our normalizing flow-based Factor Analysis
(FlowFA) model of the stimulus-conditioned population activity p(r|x) as

p(r|x, θ, φ) = N (Tφ(r); fθ(x),CC> + Ψ) · |det∇rTφ(r)| . (1)

FlowFA has two major parts: (1) A flow model Tφ with learnable parameters φ that transforms the
population responses r such that the transformed responses v = Tφ(r) are well modelled by a (2)
Gaussian Factor Analysis (FA) modelN (v; fθ(x),CC> + Ψ) (Fig. 1a). Here,N (v;µ,Σ) denotes a
Gaussian distribution over v with mean µ and covariance Σ. According to the FA model, the random
variable v is generated via v = fθ(x) + Cz + ε where z ∈ Rk is a low-dimensional latent state with
k � n and an isotropic Gaussian prior z ∼ N (0, Ik) whose samples map to v via the factor loading
matrix C ∈ Rn×k. The effect of the stimulus x on the responses is captured by the mean of the FA
distribution that depends on the stimulus, modeled as a deep network fθ(x) ∈ Rn with learnable
parameters θ (Fig. 1a,b). We further include neuron-specific, independent noise ε ∼ N (0,Ψ) where
Ψ ∈ Rn×n is a diagonal covariance matrix.

Since the flow model is a trainable change of variables, it introduces the absolute determinant
|det∇rTφ(r)| of the Jacobian ∇ of Tφ with respect to r into Eq. (1). The transform itself is a
diffeomorphism, i.e. an invertible differentiable mapping Tφ : Rn 7→ Rn allowing us to evaluate
the exact likelihood of each data point and easily draw samples from the model. Therefore, the
model serves as a fully generative model from which samples of the stimulus-conditioned population
responses can easily be generated for an arbitrary stimulus.

In the model formulation presented here, we choose Tφ to act on each single dimension separately,
i.e. Tφ(r) = [Tφ1

(r1), ..., Tφn(rn)]>. This choice results in a diagonal Jacobian which not only
substantially simplifies the form of the determinant to det∇rTφ(r) =

∏n
i=1

∂Tφi
∂ri

, but also allows
us to easily compute conditionals and marginals (see appendix A for the details). This would not
generally be possible for diffeomorphisms with a non-diagonal Jacobian.
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Zero-Inflated Flow-based Factor Analysis model (ZIFFA) For two-photon Calcium imaging, a
significant portion of inferred neural activity is zero, resulting in a sharp peak at zero in the response
distribution (i.e. zero-inflated distribution) [43]. This zero-inflation is potentially a problem for
the FlowFA model since the model would attempt to generate the peak at zero by mapping a large
proportion of the Gaussian probability mass onto the “zero” responses, resulting in a poor fit to
the response distribution. To avoid this, we extend FlowFA by modeling the zero responses with a
separate peak (similar to Wei et al. [43]) and applying the FlowFA model to capture only the positive
responses. We refer to this model as Zero-Inflated Flow-based Factor Analysis (ZIFFA). More
specifically, ZIFFA is a mixture model that models neural responses below and above a threshold
value ρ with two separate, non-overlapping distributions. To capture the peak at zero, the responses
below the threshold (i.e. “zero” responses) are modeled by a uniform distribution, while FlowFA is
used to capture responses above the threshold:

p(r|x) =


 ∏

{i:ri≤ρ}

1− qi (x)

ρ


·


 ∏

{i:ri>ρ}
qi (x)


·N (Tφ(r+); fθ,+(x),C+C>++Ψ+)·|∇Tφ(r+)| ,

(2)
where qi(x) is the probability of the response being above the threshold ρ modeled, jointly with the
mean of the FA, as a function of the stimulus via a DNN fθ with learnable parameters θ. r+ and
fθ,+(x) are the sub-vectors, and C+ and Ψ+ are the sub-matrices corresponding to responses above
the threshold, and θ, C, Ψ are the same as defined in Eq. (1). Refer to appendix B for the derivation.

Control models We compare the FA-based models against two control models used for neural
system identification that assume independence among neurons with specific forms of marginal
distributions inspired by existing work: (1) Poisson [18, 22] and (2) Zero-inflated Gamma (ZIG)
[43]. To capture continuous neural responses measured with Calcium imaging, we relax the discrete
Poisson distribution into a continuous distribution by assuming r = r̂ + ε where r̂ ∼ Poisson(λ) and
ε ∼ Uniform[0, 1). This yields the likelihood function

ppoiss(r|x) =

n∏

i

λi(x)brice−λi(x)

bric!
, (3)

where λ(x) = fθ(x) is the predicted firing rate of the neurons to input image x modeled as a DNN fθ
with learnable parameters θ. The ZIG distribution is a mixture of a uniform and a gamma distribution
separated at the value ρ with no overlap [43]:

pZIG(r|x) =

n∏

i

(
1− qi(x)

ρ
+

qi(x)rκi−1
i

Γ(κi)νi(x)κi
exp

(
− ri
νi(x)

))
, (4)

where νi(x) is the scale parameter of the gamma distribution, and qi(x) is same as in Eq. (2). To
formulate ZIG as an image-computable model, νi(x) and qi(x) are jointly modeled using a DNN
fθ with learnable parameters θ. Similar to Wei et al. [43], we let the shape parameter κi be neuron-
specific, but independent of the input. Importantly, we used the same value for ρ in both ZIG and
ZIFFA models.

Note that when the covariance matrix of the FA-based models is diagonal (i.e. 0-dimensional
latent state), these models assume independence among neurons and their performance is directly
comparable to the control models.

2.2 Model components

Deep convolutional neural network fθ We capture the stimulus-driven changes in the neuronal
response distribution using a deep convolutional neural network fθ(x) with the same architecture
as used by Lurz et al. [22]. Briefly, the network consists of two parts: (1) A shared four-layer core
network, where each layer consists of a standard or depth-separable [44] convolution operation
resulting in 64 feature channels, followed by batch normalization and ELU nonlinearity, and (2) a
neuron-specific readout mechanism (referred to as “Gaussian readout”) that learns the position of the
neuron’s receptive field (RF) and computes a weighted sum of the features at this position along the
channel dimension (Fig. 1a). In contrast to Lurz et al. [22] where the RF positions δ in image space
were obtained by applying a shared affine transformation on the experimentally measured cortical
positions ∆ of the neurons, here we allow this mapping to take on a non-linear form to allow flips
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in the representation of the visual field as a function of cortical position (Fig. 1b). This is crucial
to model cortex-to-visual space mappings for multiple brain areas, as the retinotopy of some areas
are mirrored with respect to each other. During training, we apply L1 regularization to the readout
feature weights and L2 regularization on the Laplace-filtered weights of the first convolution layer.

Normalizing flow Tφ We construct the marginal flow model Tφ = affine ◦ exp ◦affine ◦ ELU ◦
affine◦ELU◦affine◦ log ◦affine from a set of monotonic functions {affine,ELU, log, exp}, of which
only the affine transformation has learnable parameters. We restricted all the affine transformation
layers to have positive scale, and additionally restricted the first affine layer to have a positive offset.
For each neuron indexed by i, we learn a separate marginal transformation Tφi . We compare the flow
transformation against two common fixed transformations: square-root [16, 30] and Anscombe [45].
These two transformations can be expressed by the general form u = exp(a log(y + b) + c) which is
a series of affine, log, affine, and exp transformations, with a = 0.5, b = 0, and c = 0 for square-root,
and a = 0.5, b = 3

8 , and c = log(2) for Anscombe. We specifically chose the components of Tφ such
that these common fixed transformations exist as special cases, ensuring that the flow transformations
are strictly more flexible than any choice of fixed transformations commonly found in the literature.
For ZIFFA, we adjusted the formulation of the marginal flow Tφ such that the predicted neuronal
responses remain above ρ, the boundary between the uniform and the FlowFA components of the
mixture model, by replacing the first affine transformation in Tφ with a layer that only shifts by −ρ.

2.3 Neural and behavioral data

We recorded the response of neurons in mouse visual cortices (layer L2/3) to gray-scale natural
images using a wide-field two-photon microscope [46] (see appendix C for details). In this study,
we used two scans from two mice spanning three visual areas: primary visual cortex (V1) and
lateromedial area (LM) in scan 1; V1 and posteromedial area (PM) in scan 2. A total of 2,867 V1
neurons and 907 LM neurons were recorded in scan 1; 5,029 V1 neurons and 3,343 PM neurons were
recorded in scan 2. Among these, we used 1,000 V1 and 907 LM neurons from scan 1, and 1,000
V1 and 1,000 PM neurons from scan 2. For both scans, neurons were randomly selected if the area
contained more than 1,000 neurons. We also recorded behavioral variables such as pupil dilation,
simultaneously. The natural image stimuli were sampled from ImageNet [47], cropped to fit a monitor
with 16:9 aspect ratio, and presented to the mice at a resolution of 0.53 ppd (pixels per degree of
visual angle). A total of 6,000 images were shown in each scan, of which 1,000 images consist of
100 unique images each repeated 10 times to allow for an estimate of the neural response variability.
We used the repeated images for testing, and split the remaining images into 4,500 training and 500
validation images.

2.4 Model fitting and evaluation

Fitting We trained all models end-to-end via gradient-based optimization to maximize the log-
likelihood obtained from Eqs. (1), (2), (3) or (4) for the corresponding model, optimizing over all
learnable parameters. To ensure that Ψ, the diagonal covariance matrix, stays positive-valued, we
re-parameterized Ψ = eν and optimized ν instead. To find the best image-computable DNN models,
we used Bayesian optimization [48] to find hyper-parameters that maximized the final log-likelihood
of the trained model. Hyper-parameters include the learning rate and regularization coefficient on the
readout weights. The log-likelihood used for scheduling learning rate, early stopping, and finding
hyper-parameters was computed on the validation set. Additional details about training can be found
in appendix D. The code can be found at https://github.com/sinzlab/bashiri-et-al-2021.

Evaluation We compared the FA-based models (ZIFFA, FlowFA, and FA with fixed transformations)
to the control models based on likelihood and leave-neuron-out prediction correlation on the test set.
For the former, we computed the likelihood of the responses in bits per neuron per image under each
model, based on Eqs. (1), (2), (3), and (4), accordingly. For the correlation measure, we computed
the Pearson correlation between the predicted and the measured responses of each neuron on the
test set. For the FA-based models that may capture the statistical dependency (i.e. covariance)
between neurons, we predicted the response of a given neuron conditioned on the responses of all
other neurons recorded simultaneously on the trial. More specifically, given an image x and the
response of all other neurons r\i, we estimated the response of a neuron ri to the image by computing
the posterior mean of the neuron’s response E[ri|x, r\i]. We refer to this measure as conditional
correlation (see appendix E for details).
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a b
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Figure 2: FlowFA model recovers the underlying transformation. a: Simulated responses for 2
neurons under various transformations. Across all transformations, transformed responses were
sampled from Gaussian distributions with differing means (indicated by the color of the samples) but
identical covariance. The covariance between the two neurons is shown in black text. b: Transforma-
tions learned by the flow model are shown in black, overlaid on the ground-truth transformations.
c: Performance of models with fixed or learned (flow) transformations (rows) trained on responses
simulated with a variety of transformations (columns). Cases where the simulating and trained
transformations are the same are indicated by black outlines. Performance is measured as the KL
divergence between the modeled and ground-truth distributions, where 0 would correspond to a
perfect fit.

3 Results

3.1 Model performance

FlowFA model faithfully recovers invertible transformations on synthetic data We first used
synthetic data to illustrate that our FlowFA model with a learnable transformation can adequately
learn and recover a wide variety of transformations resulting in different response distributions. To
this end, we sampled 5,000 data points for 100 neurons from models with different ground-truth
transformations (see appendix F for details on data generation). The invertible transformations
(Example 1–10) had the general form exp(a log(y + b) + c) with differing values of a, b, and c
(Fig. 2b). We trained FA-based models with either a fixed (FixedFA) or a learnable flow-based
(FlowFA) transformation. As expected, the models with a fixed transformation performed well
if the data was generated with a similar transformation, but the performance suffered when the
transformations differed (Fig. 2c, first three rows). In contrast, the FlowFA model was able to flexibly
learn every underlying transformation (Fig. 2b) and effectively captured all distributions across all
simulations (Fig. 2c, last row).

Flow-based models capture cortical response distribution well After demonstrating that the flow-
based model can effectively fit a wide range of distributions, we used it to capture distributions of the
mouse visual cortex population responses to natural images, recorded in two different two-photon
scans from two mice (scan 1 and scan 2, refer to section 2.3 for details). We trained the FA-based
models (ZIFFA, FlowFA, and FixedFA) for different values of latent dimensions k ∈ {0, 1, 2, 3, 10}.
We measured the model performance by computing the log-likelihood as well as the conditional
correlations (see section 2.4).
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Figure 3: Comparison of models trained on the mouse visual cortical population responses to natural
images. a: log-likelihood computed for models trained on scan 1 (left panel) and scan 2 (right
panel). Values for both individual (lighter shade) and average (darker shade) performance of a model
trained under various random seeds are shown. Gray block provides a zoomed-in view of the ZIFFA,
FlowFA, and Zero-Inflated-Gamma (ZIG) models. b: Neuron-specific transformations learned by
the flow-based models (ZIFFA in green, average across neurons in light green; FlowFA in pink,
average across neurons in light pink) shown in comparison to fixed transformations. c: Conditional
correlation. Format is similar to a.

The ZIFFA model outperformed all other models across all numbers of latent dimensions k in terms of
log-likelihood (Fig. 3a). Furthermore, with increasing latent dimensions, the conditional correlation
of the ZIFFA model improved significantly beyond the control models (Fig. 3c). Interestingly, we
observed that the ZIFFA model exhibited slightly lower correlation performance compared to models
with fixed transformations, reflecting that fitting models on likelihood does not necessarily yield
optimal correlation. Importantly, the flow-based models outperformed all FixedFA models in terms
of likelihood, which is corroborated by the fact that the learned transformation markedly differs from
all fixed transformations and from one neuron to the other (Fig. 3b). Overall, the results suggest
that the ZIFFA model is able to capture the (marginal) neural response distributions more accurately
than other models (Fig. S2) while at the same time it learns and takes advantage of the statistical
dependencies between neurons.

3.2 Uncovering biological insights from the trained model

Here, we explore the utility of our model in uncovering potential biological insights. All analyses
were performed on the trained ZIFFA model with 3 latent dimensions.

Model-based visual area identification Several visual areas in mice show retinotopies that are
“flipped” with respect to each other [49]. Intuitively, this means that if a point moves along the cortical
surface, as it crosses the boundary between two “mirrored” areas, its counterpart in visual space would
reverse its movement direction. As described in section 2.2, our model is equipped with a component
network that predicts the RF location δ of each neuron in visual space as a function of its cortical
location ∆ (Fig. 1b). This network can be used to infer distinct visual cortical areas by detecting
where the retinotopy “flips” with respect to the cortical position. To detect this flip we looked at the
sign of the determinant of the Jacobian of the RF positions with respect to cortical positions det ∂δ

∂∆ .
The sign can detect changes in the direction because (1) the sign of a determinant flips if one of
the column or row vectors of the Jacobian matrix flips and (2) the determinant is invariant under
rotation. When we compare distinct areas identified via the model to the experimentally identified
areas, we find a very good match (Fig. 4a, left vs. right panels). To assess the quality of the learned
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Figure 4: Analysis of the ZIFFA model with 3-dimensional latent state (k = 3). a: Model-based
area identification from responses of visual sensory neurons to natural images. Left panel (Cortex
positions): cortical position of the recorded neurons color-coded by experimentally identified areas
(green: V1; blue: LM; orange: PM). Middle panel (RF positions): learned receptive field position
for each neuron as a function of cortical positions color-coded by experimentally identified areas.
Right panel (Model-based area identification): visual areas identified via the model by computing
the determinant of the relative changes in RF position with respect to changes in cortical position;
blue color shows negative determinant (i.e. mirrored visual field representation) and red color shows
positive determinant (i.e. non-mirrored visual field representation). b–c: Distribution of the latent-to-
neuron weights across cortical positions (b) and receptive field positions (c). d: Pupil dilation (black)
and the inferred latent states (red) across trials from the test set. R2 values are computed between the
inferred latent state and the pupil dilation.

mapping, we quantified how well our model can identify distinct visual brain areas via the sign of the
determinant. Across models initialized and trained with different random seeds, the sign correctly
classifies distinct brain areas with an accuracy of 84% ± 3.4% (SEM) and 75% ± 7.7% (SEM).
Because the experimental methods to determine area assignment that we use as ground truth can be
quite coarse, the actual accuracy could even be higher. This suggests that our model could in principle
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allow neuroscientists to identify distinct visual areas from responses to natural images alone, without
the need for an extra experiment for area identification.

Inferred latent states and their functional and anatomical implications We next explored the
latent states and how they relate to anatomy or behavior. For any particular trial, the FA-based
models allow us to infer the most probable latent state z (MAP estimate), where the effect of each
latent dimension on the neural population is captured by the factor loading matrix C. However, as
formulated in Eq. (1) and (2), interpreting the inferred latent states z can be difficult because the
latent dimensions can be arbitrarily permuted and rotated (with corresponding changes in C) without
affecting the fit of the model. To facilitate interpretability of the inferred latent states, we follow a
similar procedure used by Yu et al. [30] to extract orthonormalized latent states which are uniquely
ordered by the amount of response variability each latent dimension accounts for (see appendix G for
detailed explanation).

The orthonormalized latent states inferred from the ZIFFA model showed strong correlations with
behavioral variables such as pupil dilation (Fig. 4d), as expected from previous works that use pupil
dilation as a proxy for arousal and attention [50–54]. Interestingly, pupil dilation correlated most
strongly with the second latent dimension in both scans with R2 values of 0.53 (p < 0.001, two-tailed
test for significance of correlation [55]) and 0.63 (p < 0.001) for scan 1 and scan 2, respectively,
comparable to values previously reported [56]. To our surprise, this observation was consistent across
models initialized and trained with different random seeds (Fig. S4b). To further quantify how well
the latent states can jointly predict the pupil dilation, we regressed the pupil dilation against the latent
states (Fig. S4a). The resulting R2 values were 0.56 (p < 0.001) and 0.76 (p < 0.001) for scan 1
and scan 2, respectively. The high correlation between the latent states and the known surrogates of
global brain state such as pupil dilation suggests that the latent model is able to learn meaningful
dependencies and common factors in neural population.

Next, we explored whether the effect of the orthonormalized latent states on the neurons is related to
their cortical or RF positions. To this end, we plotted the sign and magnitude of the weight mapping
from the latent state to each neuron on the cortical position (Fig. 4b) or the RF positions of the
neurons (Fig. 4c). We observed that the effect of some latent dimensions vary systematically across
brain areas where the latent dimension has generally opposite effect on different areas (Fig. 4b:
dimension 2 for both scans). In addition, some latent dimensions seemed to vary as a function of
RF positions/retinotopy where a differential effect of the latent dimension is observed for both areas
(Fig. 4c: dimension 3 for both scans). Interestingly, the first dimension which accounts for most of
the shared variability in neural responses (refer to section G for more details) seemed to have a global
effect that does not vary across different visual areas. These observations illustrate that our model
can be a useful tool for uncovering the functional and structural implications of the behavioral or
internal processes associated with the inferred latent states.

While the result of the analyses we present here are promising, we would like to point out that all
analyses are preliminary, and conclusive biological interpretations would require additional rigorous
experiments and analyses.

4 Discussion

Getting the best of both worlds Two major components of the variability in the activity of cortical
neurons are the variability due to stimulus and the variability due to unobserved or internal processes,
such as behavioral tasks or general brain states, that affect population of neurons in similar ways
giving rise to correlated variability among neurons. Here, we presented a model that combines state-
of-the-art DNN-based models to predict stimulus-driven changes in neural activity with a simple, yet
flexible, flow-based factor analysis model to account for correlated neural activity. This formulation
allows us to evaluate the exact likelihood of neural responses, easily sample stimulus-conditioned
responses, and efficiently compute conditional and marginal distributions of subsets of neurons. By
fitting this model to the activity of thousands of neurons from multiple areas of mouse visual cortex
in response to natural images, we obtained state-of-the-art performance in capturing neural response
distribution while additionally yielding latent states that exhibit meaningful relations to anatomy and
functional properties of visual sensory neurons.

Modeling zero-inflated response distribution Flow models use diffeomorphisms to map one
distribution into another. However, diffeomorphisms cannot transform a single peak at 0—typically
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observed in neural responses recorded via Calcium imaging—into a smooth distribution such as
Gaussian used in our model. The ZIFFA model avoids this problem by only transforming the positive
part of the response with a diffeomorphism while explicitly capturing the peak at 0 via a uniform
distribution as found in ZIG. Importantly, ZIFFA preserves all properties of the FlowFA model, while
capturing the marginal distributions more accurately (Fig. S2), achieving a higher likelihood (Fig. 3),
and learning more consistent and less step-like transformations (Fig. S3).

Dependency of noise correlation on the stimulus The presented flow-based models learn a nonlin-
ear transformation between a simple distribution (Gaussian FA) and the neural response distribution.
While the learned covariance structure on the “transformed” neural responses captured by the FA
model does not vary with the stimulus and the stimulus is only used to shift the mean of the FA model,
this is not true for samples from the FA model transformed back into “neural response space” because
the nonlinear flow transformation can introduce changes in the covariance as the mean varies (Fig. 2a).
This mean-dependent change in the covariance potentially allows the model to capture changes in the
covariance structure based on stimulus through the nonlinear transformation. A possible extension of
our model is an explicit dependence of the FA’s covariance matrix on the stimulus, which would allow
the model to capture more complex dependencies between the stimulus and covariance structure.

Comparison to related methods Our approach in capturing stimulus-conditioned variability is
related to many existing approaches, or can be seen as a generalization thereof, while being compu-
tationally easier to handle at the same time. Recently, Keeley et al. [35] captured the trial-by-trial
fluctuations by modeling the stimulus-specific and trial-specific latents via Factor Analysis (FA)
models much like in our model. Importantly, while we capture the dependence of the stimulus-specific
latents on the stimulus explicitly via a trained DNN, they inferred it from repeated presentations
of the stimulus. Furthermore, the final Poisson distribution used to map from the latents to the
distribution of neurons can be captured in our model via the flow-based transformation (e.g. inverse
Anscombe) that maps Gaussian-distributed latents into a continuous approximation of a Poisson
distribution. Moreover, the use of FA in combination with the marginal flow makes our approach
related to copula-based distribution approximation and related approaches [28, 29, 57]. However, by
explicitly limiting the stimulus dependence to occur via the shift in the mean of the FA model along
with flow-based transformation of responses, we avoid the reliance on the repeated presentations of
the stimuli [29] or highly constrained forms of the marginal distribution [28].

Limitations and future extensions As discussed above, our flow-based approach generalizes
several existing methods to capture stimulus-conditioned variability of neural responses while being
computationally more tractable. This allows us to train our models end-to-end directly on the
likelihood via common gradient-based optimization algorithms. Within this general framework, we
presented a specific case where we learned neuron-specific stimulus-independent transformations,
mapping responses into a FA model whose mean varies with the stimulus. As noted earlier, for
each stimulus, this approach closely parallels Gaussian copula and thus shares much of the same
limitations. Also, the fact that stimulus-dependent changes in the covariance structure only occur
through the learned transformation implies that the model can only capture changes in the covariance
structure that varies with the mean (a limitation shared with many of the existing models). That being
said, we believe that our general approach of flow-based modeling of neural response distributions
allows for several generalizations that would overcome these limitations. Examples include an explicit
dependence of the FA’s covariance matrix on the stimulus, as well as the usage of richer, potentially
stimulus-dependent, learnable transformations.

Broader impact Accurate models of neural variability such as the one presented here can lead
to deeper scientific insights and understanding of how brains perceive and compute with sensory
information, and can eventually also provide insights into how neurological and psychological
disorders may disturb these functions. In particular, a more accurate model that relates internal
brain states, stimulus-driven responses, and anatomical features such as retinotopy or memberships
to certain brain areas might provide deeper insights into the computational principles of cortex.
Naturally, our model requires data from animal experiments to be trained. However, we used existing
datasets with very general protocols that can be used in several analyses to make efficient scientific
use of data from animal experiments. Furthermore, models such as the one presented here do help
to reduce the amount of animal experiments as faithful models allow us to explore the functional
principles of neural populations in silico.
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A Expression for the marginal and conditional distributions

Here we derive and show that the marginal and conditional distributions in the neural response
space can be straightforwardly expressed in terms of the corresponding marginal and conditional
distributions in the transformed response space when the transformation function T is separable.
Consider partitioning neurons into two mutually-exclusive subgroups r(1) and r(2). Furthermore
assume that the transformation function factorizes over these two subgroups such that T (r) =
[T1(r(1))>, T2(r(2))>]> = [v(1)>,v(2)>]> = v, for some constituent diffeomorphisms T1 and T2.
Given this,

pr (r|x) = pr
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where pr and pv denote the densities for the respective random variables. Then the marginal over r(1)

can be expressed as follows:
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We now employ the change of variables with:
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Hence, the marginal over r(1) can be simply expressed in terms of marginal distribution over the
transformed variable T1(r(1)). Finally, we can write the conditional distribution over original
responses in terms of the conditionals over the transformed variables:
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Note again that in order for the expressions for the conditionals and marginals to cleanly reduce, it is
essential that the transformation T (·) is separable over the two groups of neurons.
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B Zero-Inflated Flow-based Factor Analysis (ZIFFA)

Joint distribution Here, we provide the derivation of the joint distribution p(r|x) of the ZIFFA
model. Let m ∈ {0, 1}n denote whether a neuron has a response ri below or above the threshold ρ as
indicated by mi = 0 or mi = 1, respectively. For a given assignment of m, we model the density of
a response vector r ∈ Rn≥0 as a product of (1) a uniform distribution between 0 and threshold ρ and
(2) a joint FlowFA model for above threshold responses. Accordingly, the conditional distribution
can be expressed as follows:

p(r|x,m) =


 ∏

{i:mi=0}
J0 ≤ ri ≤ ρK · ρ−1




︸ ︷︷ ︸
Uniform part for all ri withmi=0

·


 ∏

{i:mi=1}
Jρ < riK


 · N (Tφ(r+); fθ,+(x),C+C>+ + Ψ+) · |∇Tφ(r+)|

︸ ︷︷ ︸
FlowFA part for all ri withmi=1

,

where r+ and fθ,+(x) are the sub-vectors corresponding to responses that are above the threshold.
Also, C+ and Ψ+ are sub-matrices of C and Ψ, respectively, only containing entries corresponding to
the neurons with above threshold response. We choose Tφ such that T−1

φ (v) > ρ, where v = Tφ(r).
We use a slight abuse of notation and determine the size of Tφ(r+) by the dimensionality of its input
r+. Here JAK denotes the indicator function for the set A. Note that (1) this is a proper density on
Rn≥0 since it remains non-negative and integrates to one, and that (2) all population responses r that
do not agree with m (i.e. mi = 0 and ri > ρ, and vice versa) have zero density since one of the
indicator functions in the product will be zero (i.e. they enforce m). To get p(r|x), we marginalize
out m. To this end, we model the probability of each mi independently as a function qi (x) of the
image x. This yields

p (m|x) =

n∏

i=1

qi (x)
mi (1− qi (x))

1−mi ,

and

p(r|x) =
∑

m∈{0,1}n
p(r|x,m) · p (m|x)

=


 ∏
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1− qi (x)

ρ


 ·
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{i:ri>ρ}
qi (x)


 · N (Tφ(r+); fθ,+(x),C+C>+ + Ψ+) · |∇Tφ(r+)| .

Note that all 2n− 1 mixture components whose m are not in agreement with r are zero, which leaves
only one single mixture component in the end.

Conditional distribution The conditional distribution over ith neuron’s response ri given the
response of all other neurons r\i, can be computed as:

p(ri | r\i,x) =
p(r | x)

p(r\i | x)

=





(1− qi(x)) · ρ−1 if ri ≤ ρ
qi(x) · N (Tφ(r+);fθ,+(x),C+C>

++Ψ+)·|∇Tφ(r+)|
N (Tφ(r+\i);fθ,+\i(x),C+\iC>

+\i+Ψ+\i)·|∇Tφ(r+\i)| if ri > ρ,
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where subscript + \ i is used to denote all neurons with responses above threshold except for the ith
neuron. While conditioning does not change the distribution over the responses below the threshold ρ,
for the responses above the threshold, the conditional distribution is computed as the fraction of joint
distribution of all neurons p(r|x) over the joint distribution of all neurons except the target neuron
p(r\i,x). This fraction of the two Gaussian distributions is equivalent to a Gaussian distribution over
the response of the target neuron i where the mean and variance are computed conditioned on other
neurons \i:

N (Tφ(r+); fθ,+(x),C+C>+ + Ψ+)

N (Tφ(r+\i); fθ,+\i(x),C+\iC>+\i + Ψ+\i)
= N (Tφ(ri);µi, σ

2
i ),

where µi and σ2
i are the posterior mean and variance, respectively, of the ith neuron’s transformed

response conditioned on the stimulus x and transformed responses of other neurons Tφ(r+\i). These
quantities can be straightforwardly computed from the FA model as follows:

µi = fθ,+,i(x) + Σ+,i,\iΣ
−1
+,\i,\i(Tφ(r+\i)− fθ,+,\i(x))

σ2
i = Σ+,i,i + Σ+,i,\iΣ

−1
+,\i,\iΣ

>
+,i,\i,

where Σ = CC> + Ψ and Σ+ = C+C>+ + Ψ+.

It is worth noting that the expressions for the conditionals cleanly reduce only when Tφ is separable
for each neuron (see appendix A for derivations).
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C Details on data recording and stimulation

Imaging was performed at approximately 9.7Hz for scan 1 and 7.2Hz for scan 2. The recorded visual
areas were identified based on retinotopic maps generated as previously described [49, 58]. We
selected cells based on a classifier for somata on the segmented cell masks and deconvolved their
fluorescence traces using the CNMF algorithm [59].

Images were presented for 500 ms followed by a blank screen with a random duration uniformly
distributed between 300 and 500 ms. After spike inference from Calcium data, the neural responses
were extracted as the accumulated activity of each neuron between 50 and 550 ms after stimulus
onset. All behavior traces (i.e. pupil dilation and running speed) were extracted using the same
temporal offset and integration window. The neural responses traces were normalized by their
standard deviation computed on the training set.
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D Additional details about model training

The models were trained end-to-end via gradient-based optimization to maximize the log-likelihood
obtained from Eq. (1), (2), (3) or (4) for the corresponding model, optimizing over all parameters
of the model. For optimization, we used Adam [60] with (i) an early stopping mechanism [61] that
would stop the training if the log-likelihood does not improve for twenty training iterations, and (ii) a
learning rate scheduler that reduces the learning rate by a factor of 0.3 if the log-likelihood does not
improve for ten training iterations.

To find the best image-computable model, we used Bayesian optimization [48] to find hyper-
parameters that optimized the final log-likelihood (explained in section 2.4) of the trained model.
Hyper-parameters included the learning rate and the regularization coefficient on the readout weights.
The ZIFFA and ZIG models included the zero-threshold parameter ρ as an additional hyper-parameter.
To find ρ, we experimented with several candidate values and chose the value which resulted in the
highest score for the ZIG model, and used the same value for the ZIFFA model.

Each instance of the model with a specific choice of hyper-parameters was trained on a workstation
with a single NVIDIA GeForce RTX 2080 Ti GPU. A single ZIFFA model takes approximately
2–3 hours to train whereas all other models take approximately 20–30 minutes to train. The hy-
perparameter search was completed using one GPU for a total of ~20 hours. All code for model
definition, training, and evaluation were implemented in Python 3.8 using PyTorch [62] and NumPy
[63] packages.

20

77



E Computation of conditional response predictions

We estimated the posterior mean of the neuron’s responses to an image x conditioned on the responses
of other neurons via Monte Carlo approximation. To achieve this, we first drew samples from the
posterior based on the learned FA model, yielding samples in the space of the transformed responses.
We then inverse-transformed these samples to yield samples in the space of the neural responses.
Subsequently, we computed the average across these samples.

More specifically, for the FA-based models (except ZIFFA, see below), the posterior mean of the
neuron’s original response to image x was computed as E[ri|x, r\i] = 1

N

∑N
j T

−1
φ,i (s

(j)
i ) where

s
(j)
i ∼ N (E[vi|x,v\i], σ2

i ). E[vi|x,v\i] and σ2
i are the posterior mean and variance, respectively,

of the ith neuron’s transformed response conditioned on the stimulus x and transformed responses
of other neurons v\i = Tφ(r\i). These quantities can be straightforwardly computed from the FA
model as follows:

E[vi|x,v\i] = fθ,i(x) + Σi,\iΣ
−1
\i,\i(Tφ(r\i)− fθ,\i(x)),

σ2
i = Σi,i + Σi,\iΣ

−1
\i,\iΣ

>
i,\i,

where Σ = CC> + Ψ.

For the ZIFFA model, the procedure for posterior mean computation is almost identical to the
procedure explained above with two differences: 1) when computing the posterior mean and variance
of the neuron’s transformed response, we condition only on other neurons who exhibit above threshold
responses r+\i (refer to appendix B for details), and 2) the posterior mean in the neural response
space is computed as the mixture of the mean of the two mixture model components:

E[ri|x, r\i] = (1− qi(x)) · ρ
2

+ qi(x) · E[ri|x, r+\i].
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F Synthetic data generation

We generated 5,000 samples from a correlated 100-d Gaussian distribution, corresponding to the
transformed responses v of 100 neurons. The covariance matrix of the Gaussian distribution took
the form CC> + Ψ, corresponding to that of FA models. CC> was of rank 4 with C ∈ R100×4,
where the choice of the rank was arbitrary. To ensure that generated Gaussian samples (1) fall
in a range where the transformation is invertible and that they (2) cover the most nonlinear part
of the transformation, we kept the variances and covariances relatively small and sampled the
mean for each neuron in a transform-specific fashion. The entries of C were sampled uniformly
between 0.02 and 0.07, and the diagonal entries of Ψ were sampled uniformly between 0.002 and
0.01. We further imposed stronger or weaker correlations between selected neurons by scaling the
corresponding entries of the full covariance matrix either by 1.5 or 0.2. The mean for each neuron (in
the transformed response space) was uniformly sampled between a transform-specific minimum and
maximum value. The transform-specific minimum value was computed as T (ε)+α ·max(CC>+Ψ)
where ε was a small value (10−12) close to zero and α took on a transform-specific value summarized
in Table 1. The transform-specific maximum value was computed as T (10). Once the Gaussian
samples were generated for each transformation function, the samples were inverse-transformed via
the corresponding T−1 into the simulated neural responses. The code used to generate simulated data
can be found at https://github.com/sinzlab/bashiri-et-al-2021.

Table 1: transform-specific α values
T : identity sqrt anscombe example 1 example 2 example 3 example 4
α: 1.0 3.0 2.0 1.5 3.0 3.0 1.0
T : example5 example 6 example 7 example 8 example 9 example 10
α: 3.0 3.0 3.0 1.0 3.0 3.0
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G Computing orthonormalized latent states

We extract latent states from the FA-based model by computing the posterior mean E[z|x, r]. While
the relationship between the latent states z and the neural responses r is well defined via the model
relationship r = T−1

φ (fθ(x) + Cz + ε), the factor loading matrix C can only be uniquely determined
up to an arbitrary orthogonal transformation. That is, given z ∼ N (0, Ik), we can transform the
factor loading matrix C and z by any arbitrary orthogonal transform matrix R to yield C′ = CR
and z′ = R>z. The resultant alternative definition of z′ along with C′ would yield identical fit to
the neural responses since C′z′ = CRR>z = Cz and z′ ∼ N (0, Ik). Furthermore, the inferred
latent states z are not necessarily ordered by how much neural variability they account for. In fact,
the order of the latent states are arbitrary, and this can be seen by noting that a permutation matrix
is an example of an orthogonal transformation. Combined with an additional observation that the
columns of C are not guaranteed to be mutually orthogonal, interpreting the inferred latent states z is
difficult and quite arbitrary.

To address this issue, we follow a similar approach to Yu et al. [30]. Briefly, we orthonormalize
the columns of C by applying the singular value decomposition to the learned C which yields
C = UDV>. As a result, Cz can be re-written as Cz = U(DV>z) = Uz̃ where z̃ ≡ DV>z
is the orthonormalized latent state. Consequently, instead of visualizing the MAP of z, E[z|x, r],
we would visualize DV>E[z|x, r]. This approach incurs multiple advantages. Firstly, while the
elements of z (and corresponding columns of C) have no particular order, the elements of z̃ (and
corresponding columns of U) are ordered by the amount of data variance they explain. Therefore,
the inferred latent states are ordered by their contribution in explaining the variance observed in
neural activity, resulting in more intuitive and interpretable latent states. Secondly, when the singular
values are non-zero and non-repeating, the method recovers a unique latent state z̃ for C′ ≡ CR and
z′ ≡ R>z regardless of R. This can be seen from the fact that singular value decomposition of C′ is
given by C′ = UDV′> where V′ = R>V, therefore

z̃′ ≡ DV′>z′

= DV>RR>z

= DV>z

= z̃.
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H Supplementary Figures

b

a

Figure S1: Comparison of flow-based models with different model configurations. These configu-
rations include: 1) using a shared vs neuron-specific flow transformation, and 2) unconstrained vs
constrained covariance matrix of the FA. The transformation Tφ could be defined such that a single
flow transformation is shared among all neurons or it could be defined such that it contains neuron-
specific parameters resulting in neuron-specific transformations (for details refer to section 2.2).
As expected, per-neuron transformation (darker color) seem to results in a higher likelihood. The
constrain imposed on the covariance matrix was used to ensure that the marginals have unit variance
(i.e. a correlation matrix). While unconstrained covariance matrix (blue color) works best for the
FlowFA model, the ZIFFA model with constrained covariance matrix (orange color) generally results
in highest likelihood. a: FlowFA model. b: ZIFFA model.

ZIG Response r across repeats FlowFAZIFFA
a b

log p(r  | x) [bits/neuron] log p(r  | x) [bits/neuron]

Figure S2: Comparison of the learned density by the ZIFFA, FlowFA, and ZIG models. a: Example
marginal distribution of responses of 8 sample neurons to the repeated presentations of an image from
the test set and the corresponding fits of ZIFFA, FlowFA, and ZIG. While all three models peak at
zero, the FlowFA puts relatively little probability mass on positive responses r>ρ = {ri|ri(x) > ρ}.
b: Flow-based models vs ZIG log-likelihood in bits/neuron for positive responses r>ρ and “zero”
responses r≤ρ, respectively. Each point is a single trial. Compared to ZIFFA and ZIG, FlowFA
model seems to put less mass on responses r>ρ and, for many trials, more mass on responses r≤ρ.
Importantly, while ZIFFA performs very similar to ZIG for responses r≤ρ, it slightly puts more mass
on the responses r>ρ resulting in a higher likelihood performance as illustrated in (Fig. 3).
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ZIFFA FlowFA

a

b c ZIFFA FlowFA

Figure S3: Consistency of the learned transformation across models initialized and trained with
different random seeds, and across different number of latent dimensions. a: The learned flow
transformation for both ZIFFA (green) and FlowFA (pink) models with 0-dimensional latent. Square-
root (blue) and Anscombe (yellow) are also visualized for reference. Top row: Scan 1; bottom
row: Scan 2. Colors are the same as in Fig. 3. b: Quantification of the consistency of learned flow
transformations across random seeds, for the same models shown in a. To quantify the consistency,
we flattened “transformed” responses v across all neurons getting a single vector for one seed, and
then computed the R2 between flattened v of all pairs of seeds. Higher R2 value implies more
consistency. Top row: Scan 1; bottom row: Scan 2; Left column: ZIFFA; right column: FlowFA. c:
Same as b, but extended to also show the consistency of the learned transformation across models
with different number of latent dimensions.
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a b

Figure S4: Correlation and regression analysis between inferred latent states and the pupil dilation. a:
The regressed pupil dilation vs the recorded pupil dilation for the same model as in Fig. 4. b: First
three rows: The R2 values between orthonormalized latent states and pupil dilation across all random
seeds. Last row: The R2 values between regressed and recorded pupil dilation. Top: scan 1; bottom:
scan 2.
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Abstract

Robust object recognition is thought to rely on neural mechanisms that are selective to
complex stimulus features while being invariant to others (e.g., spatial location or orienta-
tion). To better understand biological vision, it is thus crucial to characterize which features
neurons in different visual areas are selective or invariant to. In the past, invariances have
commonly been identified by presenting carefully selected hypothesis-driven stimuli which
rely on the intuition of the researcher. One example is the discovery of phase invariance in
V1 complex cells. However, to identify novel invariances, a data-driven approach is more
desirable. Here, we present a method that, combined with a predictive model of neural
responses, learns a manifold in the stimulus space along which a target neuron’s response
is invariant. Our approach is fully data-driven, allowing the discovery of novel neural in-
variances, and enables scientists to generate and experiment with novel stimuli along the
invariance manifold. We test our method on Gabor-based neuron models as well as on a
neural network fitted on macaque V1 responses and show that 1) it successfully identifies
neural invariances, and 2) disentangles invariant directions in the stimulus space ∗.

Keywords: neural invariances, invariance manifold, MEI, disentanglement, contrastive
learning, visual cortex, CPPN

1. Introduction

Visual sensory areas enable animals to identify objects robustly under different viewing
conditions and contexts. Such ability is thought to require neural mechanisms that are
selective to complex stimulus features but invariant to others (e.g., spatial location or ro-
tation). To better understand biological vision, it is thus crucial to characterize which
features strongly drive neural activity and identify which transformations of such features

∗. Code is available at https://github.com/sinzlab/cppn_for_invariances.

© 2022 L. Baroni†, M. Bashiri†, K.F. Willeke, J. Antoĺık & F.H. Sinz.
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leave neural responses unchanged – i.e. single cell invariances. In the past, identification
of invariances in visual sensory systems have commonly been a hypothesis-driven process
relying on presentation of carefully selected stimuli. One example of this is the discovery
of phase invariance in complex cells of primary visual cortex (Hubel and Wiesel, 1962).
However, such an approach heavily relies on the intuition of the experimenter or serendip-
ity. Since the dimensionality of images is enormous and experimental time is limited, this
approach quickly becomes infeasible when encoding of visual information becomes more
complex in higher areas.

In recent years, artificial neural networks trained on large datasets of neural responses
to natural images have proven to be powerful predictive models of neural responses (Yamins
et al., 2014; Kriegeskorte, 2015; Antoĺık et al., 2016; Yamins and DiCarlo, 2016; Klindt et al.,
2017; Cadena et al., 2019; Kubilius et al., 2019; Sinz et al., 2018; Lurz et al., 2021; Zhuang
et al., 2021). An alternative approach might thus be to systematically explore the invariance
space of visual sensory neurons via optimization using these predictive models. A large body
of research in the field of interpretable machine learning has focused on feature visualization,
a set of techniques to identify which inputs highly activate the network units or layers (Olah
et al., 2017). These techniques have already been successfully used to find single (Walker
et al., 2019; Bashivan et al., 2019; Ponce et al., 2019) or multiple (Cadena et al., 2018;
Ding et al., 2022) maximally exciting stimuli for visual sensory neurons. However, all current
methods predict only a discrete set of stimuli from the invariance manifold. Considering the
high dimensionality of images, understanding how such stimuli are connected in the image
space can be non-trivial, especially when neurons are invariant to multiple transformations,
as it is expected to be more and more the case along the visual hierarchy.

Here, we present a systematic data-driven approach based on implicit image represen-
tations and contrastive learning, that allows the identification and parameterization of the
manifold of highly activating stimuli. We refer to this manifold as MEI invariance man-
ifold (or just invariance manifold for simplicity). We first tested our method on simple
Gabor-based toy models that exhibit multiple invariances and different invariant manifold
topologies. We found that our method correctly identifies and disentangles different in-
variance directions. We then validated our method on selected macaque V1 neurons where
it identifies an almost exact phase invariance. Taken together, our results show that our
approach can capture invariance manifolds in a meaningful way and can be potentially used
to discover novel invariances in visual sensory neurons.

2. Related work

Most Exciting Image (MEI) via pixel optimization Artificial neural networks have
been recently used to synthesize images that maximize the response of a given neuron in the
visual system of mice and monkeys (Walker et al., 2019; Bashivan et al., 2019; Ponce et al.,
2019). Such MEIs were commonly identified via direct optimization of pixel values. This is
a well established technique in the field of interpretable machine learning for inspecting the
units and their function in artificial neural networks (Erhan et al., 2009; Olah et al., 2017).
Importantly, Walker et al. (2019); Bashivan et al. (2019); Ponce et al. (2019) demonstrated
that these MEIs indeed activate biological neurons stronger than control stimuli, such as
Gabors, in most cases. These results thus demonstrate the utility of these models as digital
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twins of the biological brain, allowing neuroscientists to conduct analyses in-silico that are
infeasible to perform on the biological system, but whose predictions can be verified in-vivo.

Diverse feature visualization Previous works have mostly focused on identifying a
single MEI for a single (Walker et al., 2019) or a population of neurons (Bashivan et al., 2019;
Ponce et al., 2019). However, it is not clear whether there exist only a single MEI or rather a
manifold of maximally exciting images. To inspect the presence of such invariances, Cadena
et al. (2018) expanded on the same technique, optimizing for multiple images (diverse
MEIs) while enforcing diversity with an additional objective. Such an approach allows the
identification of multiple distant points in the manifold of maximally exciting images. Given
that the space of images is very high dimensional, the question remains how to connect such
points to construct an invariance manifold. For instance, different phases of an optimal
Gabor stimulus of a complex cell cannot be connected by straight lines in image space. The
mid point between two 180 degree shifted Gabors would be a flat image, which is certainly
not strongly driving a complex cell. Instead, the maximally exciting curve between the two
Gabors forms a circle in high dimensions.

Differentiable Image Parameterization Recent developments in feature visualization
techniques show that smooth, semantically meaningful, transition between images can be
obtained via differentiable parameterization methods (Mordvintsev et al., 2018; Ha, 2016;
Mildenhall et al., 2021). Such methods are, however, yet to be applied to characterize the
invariances of biological neurons.

3. Methods

In contrast to previous approaches to identify MEIs, i.e. directly optimizing pixel values,
we use Compositional Pattern Producing Networks (CPPNs) to optimize a reparameter-
ized version of the image. CPPNs (Stanley, 2007) are artificial neural networks mapping
pixel positions (x, y) to pixel RGB (or grayscale) values. They have recently gained a lot
of attention in the computer vision community as implicit representations of shapes and
radiance fields (Ha, 2016; Mescheder et al., 2019; Mildenhall et al., 2021). A vanilla CPPN
is a differentiable implicit representations of a single image in arbitrary resolution.

3.1. CPPN as an implicit representation of the invariance manifold

Our goal is to use a single CPPN as an implicit representation of not a single image but the
whole manifold of images that equally maximize the activation of a target neuron. For this,
a single CPPN needs to produce a variety of images. This can be achieved by extending the
inputs of the CPPN to include an additional input variable z belonging to a low-dimensional
bounded latent space. This allows the CPPN to output different images while being fed the
same set of pixel positions (Ha, 2016). In the context of learning the invariance manifold,
different values of z should result in different images that maximally excite a target neuron.
If this is achieved, z captures a latent parameterization of the MEI invariance manifold and
a specific value of it represents a single point on the manifold. We implemented the CPPN
as a simple fully-connected neural network of 8 hidden layers each with 15 units. Each
hidden layer was followed by a batch normalization and leaky ReLU nonlinearity. As we
considered only grayscale images, the output layer of the CPPN contains a single unit with a
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CPPN

 

Image
space

Model neuron

+

Input
image

Complex Cell

latent input

Ac
tiv

at
io

n

latent 
input

Figure 1: Our method uses a CPPN to map a simple low-dimensional latent space onto a
complex high-dimensional manifold in the image space. Images from this manifold
result in diverse but maximally exciting stimuli for a model neuron. Here we show
a schematic of this method applied on a complex cell. Corresponding activations
for a simple cell are also added as reference.

tanh nonlinearity, resulting in a 1D output with values between -1 and 1. To allow control
over the characteristic spatial frequency of the patterns generated via CPPN, instead of
directly using pixel positions as inputs to the CPPN, we used positional encoding of the
pixel positions via random Fourier mapping (Tancik et al., 2020; Mildenhall et al., 2021)1.

As the topology of the MEI invariance manifold might vary from neuron to neuron, we
explored different dimensionalities and boundary conditions for the latent space (“latent
input” in Fig. 1). In particular, we considered 1D and 2D latent spaces, non-periodic
(corresponding to a line or sheet topology) or periodic (corresponding to circle or torus
topology).

3.2. Constrastive objective for image diversification

After the CPPN maps the low-dimensional latent to a manifold in image space, these images
are fed to a predictive model of neural responses (Fig. 1). The parameters of the CPPN
are then optimized to (i) maximally excite a target model neuron and (ii) produce diverse
images. To enforce the latter objective, we train the CPPN with a contrastive objective
function (Chopra et al., 2005) which encourages image diversification. Specifically, for each
point zi ∈ RD, belonging to a grid of values covering the D-dimensional latent space, the
objective function to be maximized is composed of two terms:

L = Lact + Lcontrastive (1)

The first term Lact represents the resulting neural activation from the generated image
I(zi), and encourages the CPPN to generate images that highly activate the neuron:

Lact =
αi

αMEI
,

1. Each position (x, y) gets mapped to a k-dimensional space followed by sin(·) and cos(·) transformations:
[sin(b[x, y]⊤), cos(b[x, y]⊤)] where b ∼ N (0, σI) is randomly sampled from a k-dimensional normal
distribution. Here, we used k = 10 and σ = 1.
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where αi is the model neuron’s response to image I(zi) and αMEI is the neuron’s MEI
activation obtained through standard pixel optimization (see Appendix A for implementa-
tion details of MEI generation via pixel optimization). The normalization by the neuron’s
MEI activation results in a maximal objective value around 1. The second term Lcontrastive

is based on soft nearest neighbor contrastive objective (Salakhutdinov and Hinton, 2007;
Frosst et al., 2019). It uses positive and negative images to encourage a manifold of gener-
ated images to expand and be meaningfully parameterized by the latent coordinates:

Lcontrastive = c · log
1
N+

∑
zj∈Z+

exp(sim(I(zi), I(zj))/τ)

1
N−

∑
zk∈Z− exp(sim(I(zi), I(zk))/τ)

. (2)

Specifically, for each latent grid point zi a set of “positive” neighboring points Z+ is defined
on the grid. The rest of the grid points that are further from zi are treated as “negative”
points and are denoted as Z−. We use cosine similarity as a similarity measure on the
corresponding generated images. The numerator of the logarithm in Eq. (2) thus enforces
images corresponding to close-by points to look similar, while the denominator forces images
corresponding to distant points to look different. A temperature parameter τ regularizes
this term (Wang and Liu, 2021) to control the diversity of images generated by the CPPN.
We also used a scaling factor c to control the strength of the Lcontrastive contribution to the
full objective in Eq. (1). Finally, we average the single terms given by Eq. (1) across all
grid points resulting in the complete objective function to maximize during training:

L =
1

ND

∑

zi∈Z
(Lact + Lcontrastive) . (3)

Here, ND denotes the total number of grid points, D the number of latent dimensions, and
N the number of grid points per dimension.

3.3. Training the CPPN

At each step, a grid of ND evenly spaced points covering values between 0 and 2π (in each
dimension) is constructed in the latent space. To allow the CPPN to learn meaningful
representations not only at discrete positions, but on the whole latent space, a random
jitter ϵ ∈ [−a

2 ,
a
2 ]
D is added to the entire grid, where a is the spacing between grid points

in each latent dimension. If required, periodicity on the latent space is enforced by ap-
plying sin(·) and cos(·) functions on the grid points before passing them to the CPPN (i.e.
z → [cos (z), sin (z)]). The CPPN generates a grid of images corresponding to the latent grid
points. Subsequently these images are rescaled to have a fixed mean (luminance) and stan-
dard deviation (contrast) and passed to the ANN model predicting neural activation. The
constraint on the luminance and contrast allows for the comparison between the responses
across multiple images and forces highly driving features to appear in the receptive field of
the neuron, while flattening the rest of the image (for training details refer to Appendix A).

3.4. Predicting neural responses of macaque V1

Neuronal data The neuronal data have been described previously in (Cadena et al.,
2022). In brief, responses of neurons in medial primary visual cortex at eccentricities ranging
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from 1.4 to 3.0 degrees of visual angle were recorded from two rhesus macaque monkeys.
Using 32-channel linear silicon probes, a total of 458 neurons were isolated in 15 (monkey
1) and 17 (monkey 2) sessions. Neural activity was recorded in response to natural images
from ImageNet (Deng et al., 2009) while the monkeys were fixating on a central fixation
spot. Each image was shown for 120ms, and spikes were extracted from 40 to 160 ms after
image onset. Per recording session, between 10,000 and 15,000 unique images out of a pool
of 24075 ImageNet images were presented in blocks of 15. All images were displayed in
grayscale, with a resolution of 63 pixels per degree (ppd), covering 6.7 degrees visual angle
on the monitor.

Predictive model The artificial neural network (ANN) model we used for predicting
neural responses from macaque V1 is inspired by previous deep network models (Cadena
et al., 2019; Lurz et al., 2021). It consists of a nonlinear core which captures general im-
age representations, and a readout that maps the core representations onto scalar neuronal
responses via regularized regression. As core, we used a CNN with depth separable convolu-
tions (all layers except the first), with 3 layers and 32 feature channels per layer. After each
convolutional layer, a batch normalization followed by an ELU nonlinearity are applied.
From the last layer, a pyramid readout (Sinz et al., 2018) extracts the features at a learned
spatial location (x, y) as well as at the same location in two progressively downsampled
versions of the last layer’s output. We used average pooling with a kernel size of 3 in each
downsampling step. n = 96 weights per neuron are then learned to linearly combine the
features from the last layers and its two downsampled versions. The resulting outputs are
then passed through an ELU+1 nonlinearity to finally obtain the scalar positive firing rate
for each neuron.

Training the ANN on monkey V1 responses We first cropped the images to the
central 2.65 degrees (from the original 6.7 degrees) and subsequently downsampled the
resolution to 35 pixels per degree, leading to an input size of 93×93 pixels for the ANN
model. Prior to model training, we split all stimuli into 19200 training, 4800 validation,
and 75 test images, and z-scored all images based on the mean and standard deviation
across the training and validation set. We trained our ANN by minimizing the Poisson
loss 1

m

∑m
i=1

(
r̂(i) − r(i) log r̂(i)

)
, where m denotes the number of neurons, r the observed

neuronal firing rate, and r̂ the predicted firing rate. We then optimized the parameters
of the ANN using the Adam (Kingma and Ba, 2014) optimizer with a learning rate of
0.0042. We decreased the learning rate by a factor of 0.3 when the validation loss did not
decrease for three consecutive epochs for a maximum of 3 times before stopping the training
altogether.

4. Results

We tested our method on simple Gabor-based model neurons with known (and exact)
invariances and on neural network models predicting the responses of macaque V1 neurons.
On synthetic data, we tested our approach on model neurons with a variety of invariances.
While the method can be applied to arbitrarily high-dimensional invariance manifolds, here
we considered model neurons with 1D and 2D invariances to easily visualize the results and
facilitate interpretation of the learned invariances. Specifically, we considered a simple cell
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Figure 2: Invariances generated from equally spaced points in a periodic 1D latent space
in the case of a complex cell (A) and of a orientation invariant neuron (B) and
activation values to different images in the corresponding learned manifold

corresponding to a single point (i.e. no invariance), a complex cell (phase invariance) as well
as an orientation-invariant neuron corresponding to a circle, and a phase-and-orientation-
invariant neuron corresponding to a torus2. In the case of phase-and-orientation-invariant
neuron, we additionally considered a partial orientation invariance covering only 90 degrees,
resulting in a cylinder invariance topology (see Appendix B for implementation details).
This variety of topologies allowed us to test how robustly our method parameterizes the
entire invariance manifold, whether the parameterization associates meaningful directions
to the axes of the latent space, and how it behaves when the topology of the latent space
does not match the one of the invariance manifold.

Learning invariance manifolds with 1D latent spaces First, we explored how our
method parameterizes 1D invariances in the case of complex and orientation-invariant model
neurons. Since both phase and orientation represent periodic transformations, the invari-
ance manifold of these cells have the topology of a circle. We therefore first tested a 1D
periodic latent variable z as input to the CPPN. Our method identified the invariance man-
ifold almost perfectly (Fig. 2). Specifically, the latent space input represents a parameter
that corresponds to the angle characterizing the invariance. Next, we considered a non-
periodic 1D latent space – topology of a line. In this case, the temperature parameter of
the contrastive objective seems to affect the extend of the invariance manifold captured by
the CPPN. The reason for this behavior is a mismatch between the true invariance topology
(a circle) and the fitted topology (a line): for a line topology, opposite boundaries in the
latent space correspond to negative samples, and the contrastive objective encourages them
to look dissimilar discouraging the model to complete a full circle (see Appendix C for a
more thorough analysis). Nonetheless, even in this case, the generated invariance manifold
well adheres to a part of the ground truth invariance manifold and achieves a meaningful
parameterization of the invariance (see Fig. S2).

In the scenarios we considered so far the latent space dimensionality matched the dimen-
sionality of the invariance manifold. However, it is possible that the underlying invariance
manifold is higher-dimensional than the CPPN’s latent space. To see how it behaves in such
a scenario, we applied a CPPN with a 1D latent space on a phase-and-orientation-invariant
neuron (2D invariance). While it is not possible to capture the complete invariance mani-

2. To be more precise, the MEI invariance manifold of a phase-and-orientation-invariant neuron has the
topology of torus that touches itself for phases corresponding to even Gabors and rotations of 180 degrees.
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Figure 3: Invariances learned with with 2D latent space for different configurations of latent
space topology and topologies of the ground truth invariance manifold. Mean
and standard deviation of the activations corresponding to the shown images are
reported in Appendix G.

fold in this case, in Appendix D we show that our method still learns a submanifold of the
higher-dimensional invariance manifold.

Our method implicitly assumes the invariance manifold to be continuous and so far
we tested it on smooth ground truth invariances. As a final test, we also assessed how
well it can capture discontinuous manifolds. Our results (Fig. S5) show that our method
can indeed learn to approximate discontinuous invariance manifolds successfully (for details
refer to Appendix E).

Learning invariance manifolds with 2D latent spaces Subsequently, we considered a
2D latent space with non-periodic (sheet topology) and periodic (torus topology) invariances
and trained a CPPN to identify the invariances of all the neuron models mentioned above
(Fig. 3). In the case of a simple cell, the CPPN learned to ignore the invariance latent
variable z and collapsed the predicted invariance manifold onto a single point, matching
the Gabor filter corresponding to the MEI of the cell (Fig. 3 left column). In the case of a
complex cell, the CPPN learned to ignore one latent dimension and associated the invariance
transformation with the other (Fig. 3 second column from left), as it would be expected in
the ideal case. In a similar fashion to the 1D case (Fig. 2), the CPPN with non-periodic
latent learned an incomplete yet meaningful parameterization of the invariance, whereas
the CPPN with periodic latent learned the full invariance.

In the case of the jointly orientation-and-phase-invariant neuron, the CPPN learned both
invariances and disentangled them in the latent space nearly perfectly (Fig. 3 second column
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Figure 4: A: Nonlinearity index of macaque V1 neurons. Black circles highlight the neu-
rons shown in panels B–E. B–E: Phase invariances identified with periodic 1D
latent (B–D) and with 2D non-periodic latent(E) and corresponding activations.
For visualization purposes, MEIs are cropped around the receptive field of the
neurons.

from right). This result is particularly relevant, as it allows both clear identification of the
invariance and control over it via the latent space. Again, the CPPN mapping from non-
periodic latent space parameterized only half of the true periodic invariance transformations.
We then explored the scenario of a phase-and-partially-orientation-invariant model neuron.
The invariance manifold of this neuron model has the topology of a cylinder. In this case,
the CPPN with a non-periodic latent space learned both invariance transformations and
disentangled them along the two latent space dimensions (Fig. 3 right column top row). In
line with the previous results, the partial orientation invariance transformation was learned
fully, whereas the phase transformation was learned up to a 180 degree phase shift (Fig. 3
right column top row). Fitting a periodic latent space on a non-periodic invariance manifold
topology is more complex. Specifically, to deal with non-periodic invariances, the CPPN
mapping from periodic latent can either learn the full invariance transformation twice, or
introduce sudden jumps in the invariance manifold (Fig. 3 right column bottom row). Our
experiments indicate that both scenarios can happen (see Fig. S6) and that the CPPN can
still learn to disentangle the two transformations.

Learning the invariance manifold of macaque V1 complex cells Lastly, we set out
to validate our method on a model for a population of macaque V1 neurons (see section 3.4).
The Gabor-based model neurons above presented (almost) exact invariances, with no fluc-
tuations over activation levels. In a biological neuron, however, a meaningful definition of
the MEI invariance manifold should be more forgiving, allowing for a broader variety of
images to be considered maximally exciting, for the following reasons: First, it is not to be
expected that biological neurons present exact invariances over maximally exciting stimuli.
Second, the data collected and analyzed in neurophysiological experiments are intrinsically
noisy and limited in size. Third, our experiments here are performed on neural network
models fitted to neural responses, which despite achieving high predictive performance, are
not perfect. We used an ensemble model of ANNs (see section 3.4) as a model of of macaque
V1 neurons and applied our method on complex cells that were identified using a nonlin-
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earity index (Antoĺık et al., 2016). See Appendix H for details on selecting complex cells.
Fig. 4 shows that the CPPN found phase invariance in the selected neurons: it generated
a variety of maximally exciting images resembling Gabor filters and parameterized their
phase transformation with one of the latent space dimension (see Appendix I for a more
thorough analysis of the learned phase invariance). This demonstrates the ability of the
method to identify invariances in biological neural representations.

5. Discussion

We presented a data-driven method that combines a CPPN with a contrastive learning
objective to map from a low-dimensional latent space to a manifold in the space of images
that describes the MEI invariances of a given neuron. We tested our approach on synthetic
neural responses, where multiple ground truth exact invariance manifolds were known, as
well as on predictive models of macaque V1 complex cells. We showed that our approach
successfully uncovers MEI invariance manifolds in both scenarios. In contrast to previously
presented approaches, our method allows a smooth parameterization of the invariance man-
ifold and, when multiple invariances are present, it disentangles them along the axes of the
latent space. When the dimensionality of the latent space is higher than the dimensionality
of the invariance, the CPPN learns to ignore unnecessary latent dimensions.

In the future, our approach can be extended to learn implicit representation of MEI
invariances for multiple neurons, for instance by associating to each neuron a learnable
embedding used as a fingerprint. Such multi-neuron implementation, in combination with a
regularization of the space of fingerprints, could, in principle, allow us to classify neurons in
functional clusters, according to their invariances. Similarly, a multi-neuron implementation
could allow us to study interesting tuning directions, i.e. directions in image space to which
certain neurons are selective, whereas others are invariant. We believe that the approach
presented here will prove to be a valuable tool to advance our understanding of visual
sensory coding, especially in the higher visual areas, such as V4, that potentially exhibit
more invariances, both in terms of quantity and complexity.
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Appendix A. Additional training details

A.1. CPPN training details

The CPPN was trained via gradient-based optimization to maximize the objective in Eq. 3.
During training, the contrastive objective requires a set of positive and negative input im-
ages for each latent input. This was achieved with the construction of masks identifying
positive and negative points. Positive neighboring areas are as squares surrounding the point
considered, and extending from it in each direction for 0.1 ∗N number of points (Fig. S1).
The periodicity condition of the latent space is reflected in the masks of points close to the
boundaries. Regularization strengths were rescaled as c = c̄× τ

2 to normalize the maximum
possible contribution coming from a single point in the contrastive term depending on tem-
perature. We observed that strong initial regularization seems to disentangle the invariant
directions and to avoid sudden jumps in image space as a function of the latent space, but
can concurrently deteriorate the MEIs generated. This is due to the fact that the objective
in this case has to balance between maximizing activation and satisfying comparably strong
regularization conditions. For this reason during training we decrease c̄.

E F G H

A B C D

Fig. S1: Masks to determine positive (red) and negative (blue) examples on the grid for
different conditions. Neighbouring size set to sn = 0.1. (A-D): Masks for all
points in 1D grid (rows of each matrix) under periodic conditions of latent (A,C):
non periodic conditions (B,D), and grids with different number of points, np = 20
(A,B)) and np = 100 (C,D). (E-F): Mask for single points in 2D grids close to
latent space boundaries (E,G) and away from them (F,H), under non periodic
latent space (E,F) and non periodic latent space (G,H).

Synthetic 1D case Temperature was set to τ = 1, contrastive regularization strength
coefficient to c̄ = [2, 0.5]. Number of points per dimension of the grid was set to N = 100.
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Number of batches (each corresponding to a grid) per epoch was set to 100 and models
were trained for 10 epochs per each value of c̄. Learning rate was set to 0.01. Before
being presented to the model neurons, all images where rescaled to have a mean of 0 and a
standard deviation of 0.2. Images were generated with a 30× 30 pixel resolution, matching
the resolution of the Gabor based neuron models.

Synthetic 2D case Temperature was set to τ = 1 in the case of non-periodic latent
τ = 0.3 in case of periodic latent (see Appendix C). Constrastive regularization strength
coefficients were set to c̄ = [1, 0.5]. Number of points per grid dimension was set to 20,
resulting in grids of 400 points. Learning rate was set to 0.01, number of batches (each
corresponding to a grid) per epoch was set to 100 and models were trained for 100 or 120
epochs per each value of c̄ respectively in the case of non periodic latent space and periodic
latent space. Nonetheless, CPPNs appeared to converge much faster for each regularization
strength coefficient considered (20 epochs being sufficient). Before being presented to the
model neurons all images where rescaled to have a mean of 0 and a standard deviation of
0.2. Images were generated with a 30× 30 pixel resolution, matching the resolution of the
Gabor based neuron models.

Macaque complex cell Temperature was set to τ = 1, contrastive regularization strength
coefficient to c̄ = [1, 0.5]. Number of points per dimension of the grid was set to N = 20.
Number of batches (each corresponding to a grid) per epoch was set to 50 and models
were trained for 10 and 20 epochs per each value of c̄ in the 1D and 2D case, respectively.
Learning rate was set to 0.05 and 0.01 in 1D case and 2D case, respectively. Before being
presented to the ensemble model all images where rescaled to have a mean 0.2019 (cor-
responding to the mid grayscale value of the images on which the ANNs in the ensemble
model were fitted), to have a standard deviation 0.15, and if necessary pixel values were
clipped to the values corresponding to the extremes of the grayscale on the images on which
the macaque model was fitted [2.1919,−1.7876]. The standard deviation value was selected
to allow clear identification of maximally exciting features while avoiding excessive clipping.

A.2. Pixel-based MEI optimization

In this method, the pixels of an image are defined as learnable parameters and are learned
via gradient-based optimization such that the activation of a target neuron is maximized.
Specifically, we defined an input image of size 93 × 93 for monkey V1 neuron and 30 × 30
for Gabor based neurons and used the Adam optimizer with learning rate of 0.01 to obtain
an MEI after 2000 training steps.

A.3. Software and hardware specifications

All code for model definition, training, evaluation and experiment tracking were imple-
mented in Python 3.9 using PyTorch (Paszke et al., 2019), NumPy (Harris et al., 2020),
Weights & Biases (Biewald, 2020), and Docker (Merkel, 2014) packages. All CPPN models
were trained using the Adam (Kingma and Ba, 2014) optimizer on a Tesla V100-SXM2-
32GB GPU, and took a few minutes to train.
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Appendix B. Gabor-based model neurons

On synthetic data, we tested our approach on a simple cell, a complex cell, an orientation-
invariant neuron and two phase-and-orientation-invariant neurons.

• The simple cell was implemented as a Gabor filter followed by ReLU nonlinearity.

• The complex cell was implemented as an energy model (Adelson and Bergen, 1985).

• The orientation-invariant neuron was implemented as a set of simple cells with differ-
ent orientations, followed by a max-pooling operation.

• The phase-and-orientation-invariant neurons were implemented as sets of complex
cells with different orientations, followed by a max-pooling operation.
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Appendix C. The effect of temperature on invariance manifold learning

  =0.1

  =10 

  =1

Orientation-invariant neuron Complex cell

Fig. S2: Images in invariance manifolds corresponding to equally spaced points in 1D
non periodic latent space for different temperature values (row) and invariances
(columns)

Different choice of temperature can have a important effect on the extent of the invari-
ance manifold that is learned. Fig. S2 shows how in the case of a non-periodic 1D latent
space the extent depends as well on the type of invariance of the model neuron. This is due
to the fact that images belonging to different invariant transformations have different sim-
ilarity values and because the temperature parameter controls how strongly to encourage
and penalize similarity to positive samples and negative samples, respectively.

In the case of 1D non-periodic latent space, the invariance manifold corresponding to
an orientation invariant odd Gabor neuron (Fig. S2 left column) ranges from being almost
complete transformation (for low temperatures) to be slightly more than half (high tem-
perature). The phase invariance of complex cell (Fig. S2 right column), on the contrary, is
learned up to half a transformation (180 degrees) for all the temperature values considered.

Fig. S3: Effect on temperature on learning 2D invariances. Both figures correspond to an
phase-and-orientation-invariant neuron whose invariances are learned with a CPPN
with 2D periodic latent space, but with different temperature, respectively τ = 10
and τ = 0.3 from left to right.

When a neuron presents multiple invariances, temperature has an effect also on which in-
variance transformations are learned. See Fig. S3 as example. For a phase-and-orientation-
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invariant neuron, a CPPN mapping from a 2D periodic latent space is able to capture
orientation invariance only at low temperatures. At high temperature only phase invari-
ance is learned and one of the latent space axes is ignored. This results shows how the
optimization objective can, for specific invariances and temperature values, be maximized
in the scenario in which the CPPN selectively learns only one of the invariances.
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Appendix D. Learning 2D invariances with 1D latent space

In this appendix we assess the outcome of our method when the invariance manifold of the
neuron considered is higher dimensional than the latent space from which the CPPN maps.
For this purpose we considered the scenario in which a CPPN mapping from a 1D periodic
latent space is trained to identify the invariance of a phase-and-rotation-invariant neuron
(2D invariance manifold). We performed the same experiment for high temperature (τ =
10), low temperatures (τ = 0.3) and multiple seeds. With the exception of temperature,
training details match the ones reported for 1D synthetic case. Results are shown in Fig. S4.

A B C

Fig. S4: A CPPN mapping from a 1D periodic latent space is trained to capture the in-
variance manifold of a phase-and-rotation-invariant-neuron. Images corresponding
to equidistant points in latenst space are shown, together with activation. (A-B)
corresponds to different seed, (B-C) to different values of temperature.

As can be seen from the diversity of images smoothly varying and from the activation
being maximized for all images, in all cases considered the CPPN learns a 1D submanifold
of the 2D invariance manifold. Fig. S4 further illustrates however how the nature of the
learned submanifold might depend on multiple factors such as the nature of the invariances
in higher dimensional invariance manifold (e.g. phase vs orientation), the CPPN initializa-
tion (inter-seed variability), and training details (e.g., optimization objective). In the case
considered, the only invariance learned in the case of high temperature is phase (similarly
to what happens in S3). This results shows how the optimization objective can, for specific
parameter configurations, be maximized in the scenario in which the CPPN ignores one of
the invariances.
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Appendix E. Approximating a discontinuous invariance manifold with
continuous parameterization

The method presented implicitly assumes the MEI invariance manifold to learn to be contin-
uous, as many interesting biological neurons’ invariances are smooth. A given neuron could
however present a discontinuous invariance. In this appendix we illustrate how the CPPN
can address this situation learning to approximate a discrete invariance manifold with a
continuous latent space, thanks to the introduction of jumps. Specifically we considered
a polarity invariant neuron obtained max pooling the responses of ON and OFF centered
even simple cells (same parameters, except for phase). Such neuron presents an invariance
manifold that consists in two point in the image space, corresponding to the ON and OFF
centered linear filters of the simple cells from which it is composed. We trained to CPPN
mapping from a 1D periodic latent space to approximate the discontinuous invariance man-
ifold of such polarity invariant neuron. Temperature was set to τ = 0.3. Remaining training
details match the ones reported for the 1D synthetic case in appendix A.

Fig. S5: Learned invariance manifold and corresponding activations in the case of a CPPN
mapping from a 1D periodic latent space and trained to learn the discrete manifold
of a polarity invariant neuron MEIs are reported for 12 equally spaced points and
activation for 1000 equally spaced points in the latent space. Two domains, each of
them corresponding to one of the two MEIs, appear in latent space. The necessity
of connecting such domains via a continuous parameterization corresponds to the
arising of sudden jumps in image space connecting such domains, during which
activation drops. The small fraction of points corresponding to activation sensibly
deviating from MEI activation gives a measure of how localized jumps are in latent
space.

Fig. S5 demonstrates that CPPN can learn to approximate the two-point invariance
manifold mapping large domains of the latent space to the same maximally exciting im-
age and introducing sudden jumps between such domains. This approximate learning of
a discontinuous and discrete manifold with a continuous latent space is possible thanks to
the decreasing strength of the contrastive objective during training. In the first part of the
training, the high regularization strength c of the contrastive objective tends to be predom-
inant and the CPPN learns a smooth manifold of images that are particularly diverse, that
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tend to highly activate the neuron but that are not exactly maximally exciting. When the
regularization strength decreases, however, the activation objective becomes predominant
over the contrastive objective that ensures smoothness and the CPPN learns to introduce
jumps between the domains in which the generated images look the same.
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Appendix F. Periodic 2D latent space on cylinder invariance topology

This appendix displays some of the results obtained when fitting a 2D periodic manifold on
a non-periodic invariance (cylinder topology).

Fig. S6: Two different instantiations (same hyperparameters, different seeds) of the same
CPPN learning a phase-and-partially-orientation-invariant neuron invariance man-
ifold with a 2D periodic latent. Fitting a 2D periodic latent on a non-periodic in-
variance manifold forces either sudden jumps (left figure, jump on the orientation
axis) or to learn the same transformation twice (right figure, rotation of 90 degrees
is learned first clockwise and than anticlockwise)
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Appendix G. Activations corresponding to images in Fig. 3

simple cell complex cell
phase and orientation
invariant neuron

phase and partially
orientation invariant
neuron

2D non periodic
latent

1 ± 8e-8 0.991 ± 0.006 0.991 ± 0.007 0.991 ± 0.006

2D periodic
latent

1 ± 9e-8 0.990 ± 0.007 0.985 ± 0.007 0.985 ± 0.006

Table 1: Mean and standard deviation of the activations corresponding to images generated
from the learned invariance manifold when using a 2D latent space (corresponding
to images shown in Fig. 3).
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Appendix H. Selection of complex cells

We identified complex cells following these steps:

1. We created an ensemble model, averaging the predictions of n = 3 ANNs implemented
and trained as described in 3.4.

2. We trained multiple instances of a linearized version (LN models) of the ANN model
obtained by simply dropping the nonlinearities in the model (except the last one which
ensures positive-values firing rates).

3. We computed a nonlinearity index for each neuron by comparing the correlation of
the ensemble model predictions with trial-averaged neural responses with the highest
correlation achieved by any of the trained LN models: Inl = (cens−max(clin, 0))/cens.

4. Among neurons with high Inl we selected the ones with cens > 0.8 to consider only
nonlinear neurons well modelled by our ensemble.

5. We performed direct pixel optimization to identify one MEI per neuron

6. We selected the neurons whose MEI visually resembled a Gabor filter.
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Appendix I. Analysis of the MEIs generated via CPPN

To better show that our method has captured the previously shown phase invariance in
monkey V1 complex cells, for each image generated via the CPPN (Fig. 4B–D) we learned
a Gabor filter that results in the least mean squared error (Bashiri, 2020), and assessed
the phase of the learned Gabor filters. Fig. S7 shows that the learned Gabor filters are a
close match to the MEIs both qualitatively (i.e. visually) and quantitatively (i.e. resulting
activations). Importantly, as we go along the learned invariance manifold the phase of the
learned Gabor smoothly changes and the manifold covers the complete 2π cycle.

B

C

A

Fig. S7: Analysis of the MEIs generated via CPPN using fitted Gabors. A, B, and C corre-
spond to the neurons shown in Fig. 4B, 4C, and 4D, respectively. For visualization
purposes, MEIs and Gabors are cropped around the receptive field of the neurons.
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ABSTRACT

In recent years, deep learning models have set new standards in predicting neural
population responses. Most of these models currently focus on predicting the mean
response of each neuron for a given input. However, neural variability around
this mean is not just noise and plays a central role in several theories on neural
computation. To capture this variability, we need models that predict full response
distributions for a given stimulus. However, to measure the quality of such models,
commonly used correlation-based metrics are not sufficient as they mainly care
about the mean of the response distribution. An interpretable alternative evaluation
metric for likelihood-based models is Normalized Information Gain (NInGa) which
evaluates the likelihood of a model relative to a lower and upper bound. However,
while a lower bound is usually easy to obtain, constructing an upper bound turns
out to be challenging for neural recordings with relatively low numbers of repeated
trials, high (shared) variability, and sparse responses. In this work, we generalize
the jack-knife oracle estimator for the mean—commonly used for correlation
metrics—to a flexible Bayesian oracle estimator for NInGa based on posterior
predictive distributions. We describe and address the challenges that arise when
estimating the lower and upper bounds from small datasets. We then show that
our upper bound estimate is data-efficient and robust even in the case of sparse
responses and low signal-to-noise ratio. We further provide the derivation of the
upper bound estimator for a variety of common distributions including the state-
of-the-art zero-inflated mixture models, and relate NInGa to common mean-based
metrics. Finally, we use our approach to evaluate such a mixture model resulting in
90% NInGa performance.

1 INTRODUCTION

In recent years, systems neuroscience has seen great advancements in building neural encoding
models of population activity [24; 1; 3; 11; 21; 16; 6; 23]. Most of these models focus on estimating
the conditional mean of the response distribution given a stimulus and are consequently evaluated
on mean-based measures such as correlation or fraction of explainable variance explained (FEVE).
However, neural responses exhibit a great deal of variability even when the animal is presented with
the same stimulus. This variability is not just noise, but might be a symptom of underlying neural
computations. In fact, many normative theories that link first principles to neural response properties,
like the Bayesian brain hypothesis [18], neural sampling [12; 4] or probabilistic population codes [17],
make predictions or rely on the variability of neural activity around the mean [15; 13; 5]. If we want
to use neural encoding models as a quantitative underpinning for these theories, models are needed
which accurately predict and are evaluated on complete response distributions. While progress has
been made at building such models [22; 2], it is not clear what upper bound on the performance we
can expect. However, this question is important as it gives us an indication how close our models are
to the true system.

In the case of mean-predicting models, correlation-based metrics are often used for evaluation [16; 8].
Correlation is an interpretable measure since it is naturally bounded between −1 and 1. However,
for vanilla correlation, it is impossible for any model to achieve a correlation of 1 in the presence of
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Figure 1: Comparison of
lower and upper bound likeli-
hood estimates (Null vs GS)
per neuron. Left: For many
neurons, the PE approach
yields worse GS than the
Null score. The Bayesian
method results in the ex-
pected outcome of upper
bound scores being higher
than lower bound scores.
Right: Two example neu-
rons demonstrating where the
PE method fails (red) or suc-
ceeds (green).

trial-to-trial fluctuations. Therefore, model correlation is often normalized by an upper bound oracle
estimator [19; 16], which is commonly obtained by computing point estimates of the conditional
mean using the responses to repeated presentations of the same stimulus. For a likelihood-based
metric, a similar normalization to a bounded and interpretable scale would be desirable, especially
for: 1) Assessing whether a model has achieved its “best possible” performance for a given dataset,
and 2) comparing models that are trained on different datasets, which can exhibit different levels of
achievable performance. To this end, one can use Normalized Information Gain (NInGa) [14], which
uses an estimate of both upper and lower bound, to put the likelihood between two meaningful values.
However, the challenge lies in how these bounds can be obtained for noisy neural responses.

In this work, we develop a robust way to estimate such lower and upper bounds for NInGa on
neuronal responses. We show that a point estimate approach for obtaining the upper bound fails and
demonstrate that this is caused by the lack of robustness for the estimate of moments beyond the
mean. This is especially pronounced when dealing with data that have few samples, sparse responses,
and low signal-to-noise ratios which are common characteristics of neural responses. To mitigate this
problem, we propose a generalization of the point estimate approach to a full Bayesian treatment
using posterior predictive distributions. Our approach yields lower and upper bounds which are
proven to be robust to all the above-mentioned complexities in neural data. We derive a general
expression for the Bayesian estimator for zero-inflated distributions that can be efficiently estimated
under very general conditions by solving only a single one-dimensional integral on a bounded interval.
These distributions capture the sparse nature of neural responses, in particular for 2-photon recordings,
and include state-of-the-art zero-inflated mixture models [22; 2]. Using this full-likelihood-based
metric, we then evaluate a zero-inflated mixture model and find that it performs remarkably well at
90% NInGa. Finally we experimentally and mathematically relate NInGa to other common metrics
for the performance of neural prediction models which are based on the mean and derive general
conditions under which likelihood and correlation as a metric identify the same predictive function.

2 METHODS

2.1 NORMALIZED INFORMATION GAIN AND PROBLEMS WITH POINT ESTIMATES

Information Gain Let p(y|x) denote the distribution of a neuron’s response y to a stimulus x. In
order to evaluate and interpret the modeled distribution p̂(y|x) we use Normalized Information Gain
(NInGa) [14; 20] which sets the model likelihood on an interpretable scale between an estimated
lower and upper bound:

NInGa =
⟨log p̂(y | x)⟩y,x − ⟨log p0(y)⟩y,x
⟨log p∗(y | x)⟩y,x − ⟨log p0(y)⟩y,x

(1)

using a Null distribution p0(y) and a Gold Standard distribution p∗(y|x). This method of computing
NInGa can be interpreted as a normalized comparison of lower bounds of mutual information [20, and
Appendix E]. In general, IG is completely flexible in the choice of Null, Gold Standard, and trained
model distribution. Therefore, it can be used for model comparison across different distribution
families as long as the GS and Null model are kept the same. The Null model should reflect basic
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aspects of the response. Here, we choose a Null model that does not account for any stimulus-related
information, resulting in the marginal distribution of responses p0(y). The Gold Standard (GS)
model p∗(y|x), on the other hand, should be the best possible approximation of the true conditional
distribution p(y|x). Here, we use an oracle model that has more information than the model under
evaluation, such as access to repeated presentations of the same stimulus. Importantly, we do this in a
leave-one-out fashion: given a set of n repeats, the GS parameters of a target repeat i are estimated
from n− 1 left-out repeats \i. However, as we demonstrate below, estimating a robust GS model can
be challenging.

Point Estimate (PE) GS model The parameters θ of the upper bound estimator can be obtained as
point estimates (PE) from n− 1 left-out repeats:

p∗(yi|y\i, x) = p(yi|θi) with θi = f(y\i),

where f is a function used to obtain the point estimate of θ. In our case, f represents moment
matching. For correlation-based performance metrics of neural prediction models, a jack-knifed mean
estimator over repeated presentations of the same stimulus E[yi|x] = 1

n−1

∑
yj∈y\i

yj is commonly
used as an oracle predictor for the conditional mean to obtain an upper bound on the achievable
performance in the presence of noise [19; 16]. While the posterior predictive distribution is generally
conditioned on stimulus x because it requires responses to the repeated presentations of the same
stimulus, for the remaining of this manuscript we will drop the conditioning on x for brevity.

Problems with the PE approach To demonstrate the problems with point estimate GS models,
we modeled neural responses with a zero-inflated Log-Normal likelihood and estimated the upper
bound using the PE approach (see Appendix A.1 for details on data, [22; 2] for details on zero-
inflated distributions, and Appendix B for the moment matching derivations). Since the GS model
estimates parameters per stimulus, it should yield higher likelihood values than the Null model whose
parameters are not stimulus-specific. However, applying the PE approach to neural data, we observed
that the Null model outperforms the GS model for the majority of neurons (Fig. 1, black points).
The reason for this effect is that the PE approach is sensitive to the sparse distribution of the data,
which combined with few responses per stimulus results in an overconfident estimation of the GS
parameters (see Fig. 1 on the right; Appendix D for a more detailed analysis on where the PE fails).

2.2 BAYESIAN GOLD STANDARD MODEL

Gold Standard Model based on posterior predictive distributions To avoid an overconfident GS
model, we add uncertainty to the parameter estimation and estimate the GS model in a fully Bayesian
fashion via the full posterior predictive distribution:

p∗(yi|y\i) =
∫ ∞

−∞
p(yi|θ)︸ ︷︷ ︸
likelihood

p(θ|y\i)︸ ︷︷ ︸
posterior

dθ (2)

Note that the PE approach is a special case within this framework for which p(θ|y\i) = δ(θ−f(y\i))
is collapsed onto a delta distribution.

Efficient estimation for zero-inflated distributions In general, the integral in equation 2 is
intractable and the posterior predictive distribution can only be evaluated using numerical approx-
imations. Only for certain choices of likelihood the integral can be solved analytically if the right
conjugate prior was chosen.

Here, we show that the posterior predictive distribution can be efficiently computed for the class
of zero-inflated distributions [22, Fig. 2]. In principle, such a distribution is a mixture of a delta-
distribution at zero and a density of a positive part. In practice, we replace the delta-distribution with
a uniform distribution in a small interval [0, τ) and shift the positive part to the interval [τ,∞) so that
the two mixture components do not overlap

The probability density for a single stimulus x is then defined as:

p̂(y|x) = (1− q(x)) · pu(y)︸ ︷︷ ︸
uniform

+ q(x) · p(y|θ1(x))︸ ︷︷ ︸
positive distribution on [τ,∞)

, (3)
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Figure 2: Graphical model for a zero-
inflated distribution. A stimulus x deter-
mines the probability q whether a neu-
rons fires or not and the parameters θ1
of the response distribution of the non-
zero response distribution. A Bernoulli
random variable mi determines whether
a neuron fires on a particular trial i.
If mi = 1 a response is drawn from
p(yi|θ1), otherwise from p(yi|θ0).

q mi

θ1x

yi

θ0

∀1 ≤ i ≤ n

where the mixing proportion q and the parameters θ1 are dependent on x. When using a predictive
model, q and θ1 are typically predicted from the stimulus x using an encoding model. Zero-inflated
likelihoods are the basis of current state-of-the-art likelihood-based neural encoding models [22; 2].

Here we show that the posterior predictive distribution for a zero-inflated likelihood boils down to a
one dimensional integral over q if the posterior predictive distribution of the positive part is known.

Lemma 1. The posterior predictive distribution of a zero-inflated distribution as defined in equation 3
is given by

p(yi|y\i) =

{
p(yi|y0

\i) ·
∫
q
(1− q) · p(q|y\i) dq if yi < τ

p(yi|y1
\i) ·

∫
q
q · p(q|y\i) dq if yi ≥ τ

where y0
\i and y1

\i denote the set of zero and non-zero responses in y\i, respectively.

Proof. See Appendix C.

This means that the posterior predictive distribution can be computed efficiently for a large class
of positive distributions, including the zero-inflated Log-Normal or even zero-inflated Flow models
[2]. In the next section, we demonstrate that this Bayesian treatment yields a GS model that is more
robust against outliers and yields higher likelihoods than the Null model, as expected (Fig. 1, orange
points).

3 EXPERIMENTS

3.1 ANALYSIS OF GOLD STANDARD MODELS

In this section, we investigate why the Bayesian approach outperforms the PE and test its robustness
under different numbers of left-out repeats y\i and different signal-to-noise ratios. For this analysis,
we used responses from 7672 neurons to 360 stimuli, each repeated 20 times as well as simulated data.
Details about the datasets are provided in Appendix A.1 and Appendix A.2, respectively. We base
our posterior predictive distribution on a zero-inflated Log-Normal distribution with zero-threshold
τ = exp(−10) and parameters θ1 = (µ, σ2), referring to the first and second moment of the log-
transformed positive responses (Appendix C). The conjugate prior for the Log-Normal part of the
distribution is a Normal-Inverse-Gamma distribution p(θ1) = NG−1(µ, λ, α, β) in log space whose
parameters can be chosen freely. We discuss choices of prior parameters later in section 3.2.

Bayesian GS estimates higher order moments better In order to determine which parameters of the
likelihood profits most from the Bayesian estimation, we compared GS models where the individual
parameters are either estimated via the PE or the Bayesian approach (Fig. 3a). For this we used the
largest number of left-out repeats n− 1 = 19 available in our real neuron dataset. First, we observe
that the likelihood improves with the Bayesian estimation of µ (orange vs. yellow bar) as well as
σ2 (light blue vs. yellow bar) individually. Consequently, the highest performance is achieved when
both parameters are estimated via the Bayesian approach (dark blue vs. yellow bar). Interestingly, the
relative gain in performance is much higher for σ2 than for the µ, reflecting a lower robustness of the
higher moments compared to the first moment in log space.

Bayesian GS is data-efficient Datasets can vary in how many repeats per stimulus they contain.
Since a metric should be comparable across datasets, NInGa ought to yield consistent estimates for
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a

b

c

Figure 3: Comparison of the point estimate and Bayesian GS model. a: Comparison of different GS
models where the individual parameters are either estimated via the PE or the Bayesian approach.
The number of left-out repeats y\i is 19. Colors are the same as in b. Normalized wrt. the max.
likelihood value, i.e. the dark blue bar. b: Similar to a but for different numbers of left-out repeats
y\i. Left: Simulated data. The likelihood is normalized w.r.t. the ground truth likelihood. Right:
Neural responses. Likelihood is normalized w.r.t. the maximum likelihood value, i.e. the dark blue
bar at 18 left-out repeats. c: Upper bound likelihood scores for different signal-to-noise ratios and
different number of left-out repeats y\i. Left: Point Estimate. Right: Bayesian. Likelihood is
normalized w.r.t. the ground truth likelihood. In all panels the likelihood values are averaged over
stimuli and neurons, and the error bars and shaded areas show SEM over 5 random selections of the
left-out repeats.

different numbers of left-out repeats y\i, in particular in the regime of low n− 1. The right panel of
Fig. 3b shows this on neural data where we first observe that the results of Fig. 3a are qualitatively
consistent for different numbers of repeats. The effect of the Bayesian parameter estimation on
the likelihood performance, however, is much more pronounced in the low n − 1 regime: As the
number of left-out repeats decreases the PE approach suffers much more than the Bayesian and it
completely fails at n = 3 (vanishing yellow bar). To test the higher n − 1 regime, we simulated
neural responses since the real neural dataset contained maximally 20 repeats. In the left panel of
Fig. 3b we explored the differences between the two approaches for up to 30 repeats and observed
that the Bayesian treatment consistently yields a better likelihood than the PE estimate (yellow bar
does not completely converge to dark blue bar). The probabilistic treatment of µ, however, seems
to become less important in the high n− 1 regime than that of σ2, reflecting the higher robustness
of the first moment compared to the second moment in log space (compare the difference between
orange and yellow for high vs. low n− 1).

Bayesian GS is robust to different SNRs Apart from different numbers of repeats, datasets can also
vary in terms of signal-to-noise ratio. We therefore simulated neural data with different underlying
means and variances per stimulus, resulting in different SNR values (see Appendix A.2 for details).
We then tested Bayesian and point estimate GS models on this data (Fig. 3 c) and observed that the
Bayesian approach consistently outperforms the PE approach across all SNRs (data for Fig. 3b left
panel had an SNR of 0.42).
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Figure 4: Real neural data evaluation of a neural encoding model trained on a zero-inflated Log-
Normal likelihood (ZIL) using the Bayesian upper bound estimate (GS). a: A sub-optimal prior for
the GS model results in a lower performance than the trained model (TM). Normalized wrt. the
max. likelihood value, i.e. the blue bar. b: The GS model outperforms the TM when its prior was
optimized. The TM estimates all parameters similarly well. Grey scale colors indicate models from
the same distribution as the TM (ZIL) for which all parameters are estimated by the trained model
except for the parameters in parentheses. Normalized wrt. the max. likelihood value, i.e. the yellow
bar. c: Normalized Information Gain (NInGa) for the TM and the models grey scale models from
b. Values on top of bars indicate the likelihood per image and per neuron in bits. In all panels the
likelihood values are averaged over stimuli and neurons, and the error bars and shaded areas show
SEM over 5 random initializations of the TM weights. There are no errorbars on the red, yellow and
dark grey bars since they do not involve a TM.

3.2 EVALUATING NEURAL ENCODING MODELS VIA NINGA

In Section 3.1 we demonstrated that the Bayesian approach for obtaining an upper bound estimator
greatly outperforms the point estimate (PE) approach in several aspects. From now on, we therefore
only use the Bayesian estimator when referring to the Gold Standard Model. In this section, we use
the lower and upper bound estimates to evaluate neural encoding models via Normalized Information
Gain.

To this end, we trained an encoding model on a dataset which is publicly available [16] containing
the responses of 5335 neurons in mouse primary visual cortex to 5094 unique natural images. The
dataset was split into 4472 stimulus-response pairs for training, 522 for validation, and 100 for testing.
The stimuli in the test set were each repeated 10 times resulting in n − 1 = 9 repeats for the GS
model to be computed on. The neural encoding model and the training are the same as in the model
provided by Lurz et al. [16]. Briefly, the encoding model consists of two parts: (1) A core network
which is shared across neurons with four convolutional layers (some of them depth-separable [9])
resulting in 64 feature channels, followed by batch normalization and ELU nonlinearity. And (2) a
neuron-specific Gaussian readout mechanism [16] that learns the position of the neuron’s receptive
field (RF) and computes a weighted sum of the features at this position along the channel dimension.
While Lurz et al. [16] used Poisson loss to train the models, we chose the negative loglikelihood of
a zero-inflated Log-Normal (ZIL) distribution as a loss function. This means that the model needs
to predict three parameters (q, µ, σ2) instead of a single mean firing rate λ as in Lurz et al. [16].
The readout thus learns three weight vectors to combine features extracted via the core network, at
neuron’s learned RF position. Since the metric that the model will be evaluated on is NInGa, the
early-stopping criterion was changed from correlation to likelihood. The results of these experiments
with neural encoding models are summarized in Fig. 4 and will be explained in detail below.

Choice of prior is crucial for the GS model Up to this point, we chose the prior hyper-parameters
neuron-independently: We chose the parameters of the Normal-Inverse-Gamma prior based on the
average conditional mean Ex[Ey[y|x]] and average conditional variance Ex[Vary[y|x]] of our dataset.
This left us with number of neurons samples which we fit the prior on, resulting in one identical prior
for every neuron. However, we observed that the resulting GS model (yellow bar) was outperformed
by the trained encoding model (TM model, blue bar) and did not provide a good estimate of a
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performance upper bound (Fig. 4 a). To obtain a better upper bound oracle model, we therefore
optimized the prior hyper-parameters directly on the sum of leave-one-out GS likelihoods via gradient
descent for each single neuron. This is analogous to other oracle models that have access to more
information than the predictive model under evaluation, thus providing an upper bound. Note that
this approach results in a more conservative estimate of the model performance (Fig. 4 b, compare
the blue and yellow bars). We also tried other approaches (e.g. MAP estimate) to obtain a better GS
model but none of them outperformed the Posterior Predictive GS (see Appendix I).

Encoding model captures all parameters similarly well In order to investigate which parameters
of the response distribution the encoding model predicts well, we conducted an experiment similar
to the one shown in Fig. 3 a: We compared the likelihood of the trained model (TM, blue) to cases
where we matched one or all of its three parameters (q, µ, σ2) to the GS model (see Fig. 4 b blue
bar vs. grey bars). While we could match the parameter q directly, we used moment matching to
obtain the parameters of the non-zero part of the trained model (Log-Normal distribution) from the
non-zero part of the GS model (Log-Student-t). We observed that the likelihood of the trained model
improved when each of the three parameters were matched with the GS model individually (three
lighter grey bars vs. blue bar), where q yielded the highest increase. Matching all three parameters,
however, did not result in the same performance as the GS model itself (darkest grey vs. yellow).
Since all parameters of the ZIL model were fitted on the GS model, the reason must be the difference
in distributional shape of the positive part: Log-Normal for ZIL vs. Log-Student-t for the GS model.

Encoding model performance is at 90% NInGa The final NInGa value of the trained model
using the Null model and the GS model with optimized prior hyper-parameters can be seen in Fig. 4
c. It performs remarkably well at 90% NInGa (blue bar), which corresponds to a likelihood of 7.00
bits per image and neuron (printed value above the bar). The effect of the parameter matching (grey
bars) is more emphasized and suggests that the largest performance gain can be achieved in future
models by improving the prediction of the parameter q. We performed additional analyses on multiple
datasets to show how NInGa facilitates model comparison across different datasets (see Appendix J).

4 RELATION BETWEEN NINGA AND OTHER METRICS

Neural predicting models have so far been mostly evaluated using metrics such as fraction of
explainable variance explained (FEVE) [7], correlation, and fraction oracle [19; 16]. While we cannot
expect that there is a one-to-one relationship between NInGa and these metrics, as NInGa is sensitive
to the entire response distribution whereas the commonly used metrics mostly focus on the mean
response of a neuron for a given stimulus, we can nevertheless relate NInGa to these metric under
certain assumptions. In this section we provide a summary of the relationships to these metrics.
Details and proofs can be found in Appendices F and G.

Generally, we will demonstrate the relations in two steps: First we show that NInGa linearly depends
on the expected Kullback-Leibler (KL) divergence between the true distribution p(y|x) and the model
distribution p̂(y|x). Then we derive how this KL divergence relates to other metrics.

NInGa is a linear function of ⟨DKL[p(y|x), p̂(y|x)]⟩x The NInGa described in Eq. 1 can be
re-written in terms of KL divergences between estimated/fitted distributions and the true conditional
distribution p(y|x) (see Appendix E for the detailed derivation):

NInGa =
⟨DKL[p(y|x)||p0(y)]⟩x − ⟨DKL[p(y|x)||p̂(y|x)]⟩x
⟨DKL[p(y|x)||p0(y)]⟩x − ⟨DKL[p(y|x)||p∗(y|x)]⟩x

(4)

This shows that the Normalized Information Gain is a linear function of ⟨DKL[p(y|x)||p̂(y|x)]⟩x
with a negative slope. It is maximized when average Kullback-Leibler divergence between the true
distribution and the model distribution is minimized.

NInGa vs. FEVE Using this fact, we now show that NInGa is linear in another commonly used
metric, fraction of explainable variance explained (FEVE), for a Gaussian likelihood. For a fixed
model noise variance σ̂2

ϵ the KL-divergence ⟨DKL[p(y|x)||p̂(y|x)]⟩x is a linear function of FEVE:

⟨DKL[p(y|x)||p̂(y|x)]⟩x = f(σ̂ϵ) +
1

2
(1− FEV E)× σ2

s

σ̂2
ϵ

, (5)
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Figure 5: Per neuron comparison of NInGa with correlation and FEVE. The data comes from the
TM in Fig. 4 (one of the 5 models from different initializations). a: Correlation vs. NInGa. b:
FEVE vs. NInGa. c: The neurons displayed in panel a and b were selected based on whether their
signal-to-total-variance ratio (STR) was above 0.25. The blue lines depict linear regressions with
95% confidence intervals.

where f(σ̂ϵ) = log
(

σ̂ϵ

σϵ

)
− 1

2 +
σ2
ϵ

2σ̂2
ϵ

and σ2
s is the signal variance. Since ⟨DKL[p(y|x)||p̂(y|x)]⟩x

and NInGa are also linearly related, then NInGa too is a linear function of FEVE. Note that when the
estimated noise variance is the same as the true noise variance, then Eq. 5 becomes:

⟨DKL[p(y|x)||p̂(y|x)]⟩x =
1

2
(1− FEV E)× SNR

See Appendix F for detailed derivations. If the estimated noise variance σ̂2
ϵ is not fixed, as is the

general case, this trend will still be true but the linear relationship between the NInGa and FEVE
is more noisy. In Fig. 5b, we show that by evaluating the trained model from Fig. 4 on NInGa
and FEVE per neuron. Note that we only display neurons whose signal-to-total-variance ratio
STR = σ2

s/σ
2
y = σ2

s/(σ
2
s + σ2

ϵ ) exceeds a threshold which we set to 0.25 (see Fig. 5c).

NInGa vs. correlation Another commonly used metric is the correlation ρ(µ̂x, µx) between the
model prediction µ̂x = ⟨ŷ⟩ŷ|x and trial averaged responses µx = ⟨y⟩y|x. Assuming a Gaussian
likelihood, like in the relation to FEVE, we show that for a fixed model noise and signal variance
⟨DKL[p(y|x)||p̂(y|x)]⟩x is a linear function of the correlation between µx and µ̂x:

⟨DKL[p(y|x)||p̂(y|x)]⟩x = f(σ̂ϵ) +
1

2

(
1 +

σ̂2
s

σ2
s

− 2σ̂s

σs
ρ(µ̂x, µx)

)
× σ2

s

σ̂2
ϵ

(6)

As before, if the model noise variance matches the true noise variance, σ2
ϵ = σ̂2

ϵ , we have:

⟨DKL[p(y|x)||p̂(y|x)]⟩x =
1

2

(
1 +

σ̂2
s

σ2
s

− 2σ̂s

σs
ρ(µ̂x, µx)

)
× SNR

Assuming further that the model’s signal variance matches the true signal variance, σ̂2
s = σ2

s , we get:

⟨DKL[p(y|x)||p̂(y|x)]⟩x = (1− ρ(µ̂x, µx))× SNR

It is worth noting that the assumptions for having a linear relationship with KL divergence are stronger
in the case of correlation than that of the FEVE. Specifically, there is an additional dependence on
the signal variance in the case of correlation. This makes sense as FEVE is inherently sensitive to
signal variance while correlation is not (see Appendix G for the detailed derivation). As in the case of
FEVE, we empirically show (Fig. 5 a) the relation between NInGa and correlation on our trained
model from Fig. 4. While the general linear trend can be observed, this relation is very noisy, as
expected. Note again, that we only show neurons that pass the threshold of STR ≥ 0.25.

Does a high likelihood always correspond to a high correlation? Correlation only reflects good
estimation of the mean of a distribution (see Appendix H). NInGa, on the other hand is a likelihood-
based metric and as such depends on the correct estimation of all parameters of the likelihood. So
does a high likelihood correspond to a high correlation? The answer is: it depends.

Correlation is high if the conditional mean is accurately estimated. However, since the mean of the
distribution is in general not directly a parameter of the likelihood it is not necessarily estimated
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Figure 6: Comparison of log-likelihood and correlation of a model which is optimized via maximum
likelihood estimation. Left: The model distribution is from the exponential family and has the mean
as a sufficient statistic. The optima of the two metrics coincide but an improvement in likelihood does
not necessarily mean an improvement in correlation. Data distribution: Normal. Model distribution:
Gamma. Right: The model distribution does not fulfill these criteria. No similar behavior of
likelihood and correlation can be guaranteed. If initialized with optimal correlation, the correlation
after training has decreased (dotted line). Data distribution: Gamma. Model distribution: Chi-squared.

accurately even if optimal likelihood is achieved. Therefore, there is in general no guarantee that a
model that outperforms another model on likelihood also outperforms this other model on correlation.
However, if the distribution is 1) a member of the exponential family and 2) has the mean as a
sufficient statistic [10], an optimal likelihood also implies an optimal correlation. A distribution that
fulfills these two criteria guarantees that for optimal likelihood, the mean is optimally estimated
and with it the correlation. We demonstrate this effect using simulated data (see Appendix A.2) in
Fig. 6 in the left panel: A model of such a distribution is being optimized on toy data via maximum
likelihood estimation and at the end of training the optima of likelihood and correlation coincide.
Note however that during training, i.e. for non-optimal likelihood, a training step which improves
likelihood does not necessarily yield an improvement of correlation (compare decreasing blue line vs.
increasing orange line). If the distribution does not fulfill the second criterion, i.e. if the mean is not a
sufficient statistic, no relation between the correlation and likelihood can be guaranteed, not even at
the optimum. This can be seen in Fig. 6 in the right panel: An improvement in likelihood (orange)
does not guarantee an improvement in correlation (blue). If the model was initialized such that the
correlation is optimal (dotted lines), the maximum likelihood estimation will even result in a model
that has lower correlation than it had at the time of initialization (dotted blue line at epoch 0 vs 1200).

5 CONCLUSION

In this work, we discussed the challenges in obtaining the lower and upper bound estimates for
likelihood-based measures like Normalized Information Gain (NInGa) in order to put the performance
on an interpretable scale. We introduced a robust way of obtaining such an upper bound by using the
Bayesian framework of posterior predictive distributions. Equipped with this metric, we showed that
current neural encoding models are able to predict full response distributions to up to 90% NInGa and
we examined which parameters of the distribution the model still fails at predicting. We also gave a
detailed derivation for obtaining upper bound estimates for the state-of-the-art family of distributions,
the zero-inflated distributions. Finally, we related likelihood-based metrics like NInGa to other
metrics which are commonly used in Computational Neuroscience like correlation and FEVE.

There are, of course, also some limitations to the current work. While we were able to fix the
catastrophic failure of naive PE estimates (Fig. 1), our estimates of NInGa or the GS model are not
perfect as some neurons yield NInGa > 1 (Fig. 5) which is not mathematically impossible but would
ideally not happen. Better NInGa or GS estimators will mitigate this issue. Finally, our approach is
for single neuron likelihoods. However, the neural variation is structured on a population level, for
instance through brain states. Since the general approach of NInGa still works in that situation, our
framework is flexible enough for a robust GS model of full populations to be derived in future work.
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A DATA

A.1 NEURAL DATA

Data from real neural activity is used in Fig. 1, in Fig. 3 panel a and panel b on the right side, and
in Fig. 4. Responses were obtained via two-photon calcium imaging of layer L2/3 of the primary
visual cortex (area V1) of the mouse. Recordings, experimental paradigm and pre-processing was
similar to [16]. The data for Fig. 1 and Fig. 3 consists of the responses of 7672 neurons to 360 images
where each image was presented 20 times. Since 7 trials were missing, this makes for a total of 7193
trials per neuron. The data for Fig. 4 consists of the responses of 5335 neurons to 4472 images in the
training set, 522 images in the validation set and 100 images in the test set. The images of the test set
were repeated 10 times which makes for 999 test trials per neuron since one trial was missing.

A.2 SIMULATED NEURAL DATA

Simulated neural data is used in Fig. 3 in the left part of panel b and both parts of panel c. We
generated samples for 100 neurons, 360 stimuli, and 31 repeats per stimulus. Briefly, we simulated
the data assuming a zero-inflated Log-Normal distribution where the parameters µ and σ2 of the
Log-Normal part are normal-gamma distributed. The complete description of the simulation is as
follows:

y ∼ ZIL(µ, σ2, q, τ)

µ ∼ N (µµ, σ
2/ν)

σ2 ∼ Gamma(ασ2 , βσ2)

q ∼ Beta(21, 117)

τ = exp(−10)

ν ∼ Gamma(8.29, 7.32)

ασ2 ∼ Gamma(27.81, 0.8)

βσ2 = ασ2/σ2
noise[

µµ

σ2
noise

]
∼ N

([
−3.13
0.36

]
,

[
0.158 −0.017
−0.017 0.003

])

The parameter values were chosen such that the resulting simulated data resembles the real neural
activity.

Simulating data with different SNRs In order to simulate data with different SNR values, we first
generated samples y as described above and then transformed the data into the log space z = log(y).
Next, to extract the noise we subtracted the mean per stimulus, scaled the noise and then added the
mean back. This results in a set of samples where the mean stays the same while the noise level
has been scaled. Finally, we transformed the data back into the original space by applying the exp
function on the resulting samples:

y = exp ((z − z) ∗ c+ z) ,

where z is the average across repeats and c is the scaling factor for the noise across repeats. The
SNR of the (simulated) responses is computed as Varx(Ey [y|x])

Ex[Vary(y|x)] where Varx(Ey[y|x]) is the variance of
averaged responses and Ex[Vary(y|x)] is the average noise level.

Data for comparison of likelihood and correlation The artificial data used in Fig. 6 is not
intended to simulate accurate patterns of neural activity. It is thus simply drawn from a normal and a
gamma distribution, in the left and right plot respectively. We sampled 5000 train and 500 test repeats
to three "stimuli" for two "neurons", resulting in three 2D distributions. In the case of gamma data
(left plot):
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[
y11
y12

]
∼ Gamma

([
.56
.43

]
,

[
.28
.34

])

[
y21
y22

]
∼ Gamma

([
.32
.27

]
,

[
.13
.39

])

[
y31
y32

]
∼ Gamma

([
.45
.34

]
,

[
.35
.37

])

And in the case of normal data (right plot):
[
y11
y12

]
∼ N

([
15.
21.

]
,

[
1. 0.
0. 1.

])

[
y21
y22

]
∼ N

([
16.8
16.3

]
,

[
4.2 0.
0. .5

])

[
y31
y32

]
∼ N

([
21.0
10.1

]
,

[
2.5 0.
0. 5.3

])

The fitted likelihoods are a gamma and a χ2 distribution, respectively.
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B MOMENT MATCHING FOR ZERO-INFLATED LIKELIHOOD

In this section we demonstrate how to compute the moments of each component of a zero-inflated
mixture model. Since the uniform zero part does not have any parameters, we express the moments
of the non-zero part as a function of the moments of the entire data, under the assumption of a
zero-inflated distribution. We then use those for moment-matching the parameters of the non-zero
part. The detailed step-by-step derivation is as follows:

We first express the total mean µtotal and total variance σ2
total in terms of the means and variances of

each component of the mixture model. We then solve for mean µ1 and variance σ2
1 of the positive

distribution:
µtotal = Ey[y] = (1− q) · µ0 + q · µ1

To compute the total variance we make use of the law of total variance Vary(y) = Em[Vary|m(y)] +
Varm(Ey|m[y]) where

Em[Vary|m(y)] = Em[{Vary|m=0(y),Vary|m=1(y)}]
= (1− q) · σ2

0 + q · σ2
1

and
Varm(Ey|m[y]) = Em[Ey|m[y]2]− Em[Ey|m[y]]2

= Em[{Ey|m=0[y]
2,Ey|m=1[y]

2}]− Em[{Ey|m=0[y],Ey|m=1[y]}]2

= (1− q) · µ2
0 + q · µ2

1 − ((1− q) · µ0 + q · µ1)
2

= (1− q) · µ2
0 + q · µ2

1 − (1− q)2 · µ2
0 − q2 · µ2

1 − 2q(1− q) · µ0µ1

= ((1− q)− (1− q)2) · µ2
0 + (q − q2) · µ2

1 − 2q(1− q) · µ0µ1

= q(1− q) · µ2
0 + q(1− q) · µ2

1 − 2q(1− q) · µ0µ1

= q(1− q) · (µ0 − µ1)
2.

Notation E[{a, b, ...}] is used to denote that the expectation involves the terms in the set {a, b, ...}.
The total variance can then be computed as

σ2
total = Vary[y] = Em[Vary|m(y) + Varm(Ey|m[y])

= (1− q) · σ2
0 + q · σ2

1 + q(1− q) · (µ0 − µ1)
2

The mean and variance of the non-zero part can thus be computed as

µ1 =
µtotal − (1− q) · µ0

q

σ2
1 =

σ2
total − (1− q) · σ2

0 − q(1− q)(µ0 − µ1)
2

q

The parameters of the non-zero part can then be obtained by moment matching with µ1 and σ2
1 . Note,

however, that the mean of the non-zero distribution is not µ1 itself but µ1 − τ . In a case where there
are no responses above the zero-threshold τ , µ1 and σ2

1 are not defined because of the denominator
q = 0. In this case we assign a small value of 0.1 to the mean and 0.3 to the variance. We chose these
values because they resulted in the best GS model performance for the PE approach.

B.1 ZERO-INFLATED LOG-NORMAL LIKELIHOOD

In the case of a Log-Normal non-zero part, the parameters µLogN and σ2
LogN evaluate to

µLogN = log


 µ1 − τ√

σ2
1

(µ1−τ)2 + 1




σ2
LogN = log

(
σ2
1

(µ1 − τ)2
+ 1

)

Note that µ0, µ1, σ2
0 and σ2

1 are the means and variances of the zero and non-zero part of the
distribution, respectively. The parameters µLogN and σ2

LogN are not the mean and variance of the
Log-Normal distribution but of the underlying Normal distribution in log space.
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C POSTERIOR PREDICTIVE FOR ZERO-INFLATED LIKELIHOOD

Our goal is to probabilistically infer the parameters of the distribution per image, in a leave-one-out
manner. That is, to compute p(yi|y\i, x). For brevity, we drop the conditioning on x in the following
derivations. Following the graphical model in Fig. 2, let’s define some of the density functions that
will be used later on:

p(y, θ,m, q) = p(y|θ,m)p(m|q)p(θ)p(q)
p(m|q) = qm · (1− q)1−m

p(y|θ,m) = p(y|θ0)1−m · p(y|θ1)m

p(q) = qα−1 · (1− q)β−1 · 1

B(α, β)
Marginalizing over m:

p(y, θ, q) =
∑

m∈{0,1}
p(y, θ,m, q)

= p(θ)p(q)
∑

m∈{0,1}
p(y|θ,m)p(m|q)

= p(θ)p(q) [p(y|θ,m = 0)p(m = 0|q) + p(y|θ,m = 1)p(m = 1|q)]
= p(θ)p(q) [p(y|θ0)(1− q) + p(y|θ1) · q]
= p(θ)p(q)p(y|θ, q)

Our goal is to compute the posterior predictive distribution p(yi|y\i):

p(yi|y\i) =
∫

θ,q

p(yi, θ, q|y\i)dθdq

=

∫

θ,q

p(yi|θ, q,y\i)︸ ︷︷ ︸
=p(yi|θ,q) since yi⊥⊥y\i|θ,q

p(θ, q|y\i)dθdq

=

∫

θ,q

p(yi|θ, q)︸ ︷︷ ︸
likelihood

p(θ, q|y\i)︸ ︷︷ ︸
posterior

dθdq

Let us now compute the quantities we need for the posterior predictive p(yi|y\i), for a single neuron
and a single image.

We know the likelihood: p(y|θ, q) = (1− q) · p(y|θ0) + q · p(y|θ1). Since the two distributions of
our mixture model are not overlapping we can re-write the likelihood as follows:

p(y|θ, q) =
{
(1− q) · p(y|θ0) if y ≤ τ (m = 0)

q · p(y|θ1) otherwise (m = 1)

The posterior can be derived as follows:

p(θ, q|y\i) ∝ p(y\i|θ, q)p(θ)p(q)

∝


p(θ0) ·

∏

yj∈y0
\i

(1− q) · p(yj |θ0)


 ·


p(θ1) ·

∏

yj∈y1
\i

q · p(yj |θ1)


 · p(q)

∝


p(θ0) ·

∏

yj∈y0
\i

p(yj |θ0)


 ·


p(θ1) ·

∏

yj∈y1
\i

p(yj |θ1)


 · (1− q)n0 · qn1 · p(q)

∝ p(θ0)p(y
0
\i|θ0) · p(θ1)p(y1

\i|θ1) · (1− q)n0 · qn1 · qα−1 · (1− q)β−1 · 1

B(α, β)

∝ p(θ0)p(y
0
\i|θ0) · p(θ1)p(y1

\i|θ1) · (1− q)n0+β−1 · qn1+α−1 · 1

B(α, β)
,
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where y0
\i are the zero responses, y1

\i are the positive responses, and n0 and n1 are the number of
zero and positive responses, respectively. Since the joint distribution factorizes, the whole posterior
factorizes (because it is just a re-scaled version of the joint). Normalizing each factor by its own
constant, respectively, we get:

p(θ, q|y\i) =
p(θ0)p(y

0
\i|θ0)

Z1
·
p(θ1)p(y

1
\i|θ1)

Z2
· (1− q)n0+β−1 · qn1+α−1

B(n1 + α, n0 + β)

= p(θ0|y0
\i) · p(θ1|y1

\i) · Beta(n1 + α, n0 + β) (7)

Note that in the case of the posterior over q since the distribution takes the form of a beta distribution
we can simply adjust the denominator to the appropriate normalization factor for a beta distribution
B(n1 + α, n0 + β).

Let us now combine these two components of the posterior predictive to compute p(yi|y\i):

p(yi|y\i) =
∫

θ,q

p(yi|θ, q)p(θ, q|y\i) dθdq

=

∫

θ,q

p(yi|θ, q)p(θ0|y0
\i)p(θ1|y1

\i)p(q|y\i) dθdq

=

∫

q

(∫

θ

p(yi|θ, q)p(θ0|y0
\i)p(θ1|y1

\i) dθ

)

︸ ︷︷ ︸
=p(yi|q,y\i)

p(q|y\i) dq

=

∫

q

p(yi|q,y\i)p(q|y\i) dq (8)

The posterior predictive can then be evaluated depending on whether the target response yi is below
the zero-threshold τ or above it:

If yi < τ :

p(yi|y\i) =
∫

q

∫

θ

p(yi|θ, q)p(θ0|y0
\i)p(θ1|y1

\i) dθ p(q|y\i) dq

=

∫

q

∫

θ

p(yi|θ0, q)p(θ0|y0
\i)p(θ1|y1

\i) dθ p(q|y\i) dq

=

∫

q

∫

θ0

p(yi|θ0, q)p(θ0|y0
\i) dθ0

∫

θ1

p(θ1|y1
\i) dθ1

︸ ︷︷ ︸
=1

p(q|y\i) dq

=

∫

q

∫

θ0

p(yi|θ0, q)p(θ0|y0
\i) dθ0 p(q|y\i) dq

=

∫

q

p(yi|q,y0
\i) p(q|y\i) dq

=

∫

q

(1− q) · p(yi|y0
\i) p(q|y\i) dq

= p(yi|y0
\i)
∫

q

(1− q) · p(q|y\i) dq
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And if yi ≥ τ :

p(yi|y\i) =
∫

q

∫

θ1

p(yi|θ1, q)p(θ1|y1
\i) dθ1 p(q|y\i) dq

=

∫

q

p(yi|q,y1
\i) p(q|y\i) dq

=

∫

q

q · p(yi|y1
\i) p(q|y\i) dq

= p(yi|y1
\i)
∫

q

q · p(q|y\i) dq

This means that depending on the target response yi we either need to compute the posterior predictive
of the zero distribution (i.e., Uniform) or positive distribution (i.e., Log-Normal).

Finally, the complete posterior predictive distribution is estimated via numerical integration over q.
Numerical integration in this particular case is feasible since q only takes values between 0 and 1.

C.1 ZERO-INFLATED LOG-NORMAL LIKELIHOOD

We now apply the generic derivation in the previous section to zero-inflated Log-Normal distribution
and derive the posterior predictive distribution for it. Let us start by assuming that the target response
yi is below the zero-threshold τ . In this case, the response falls into the Uniform distribution whose
parameters are fixed and do not depend on the other zero responses. Therefore, the posterior predictive
stays a uniform distribution: p(yi|y\i) = 1/τ .

Alternatively, the target response yi could be higher than the zero-threshold τ falling into the Log-
Normal distribution. In this case, we first transform the responses via the log function into the
Gaussian space, then compute the posterior predictive distribution, and finally normalize the resulting
distribution to go back into the log space:

p(yi|y\i) = p(log(yi)| log(y\i)) · | det∇yi exp(yi)|

= p(log(yi)| log(y\i)) ·
1

yi
(9)

We now focus on computing the posterior predictive in the Gaussian space. For brevity let us assign
log(y) to a new variable z = log(y). To compute the posterior predictive distribution we need to
specify a prior over our likelihood parameters, in this case µ and σ2. For a Gaussian distribution with
unknown µ and σ2 the conjugate prior is the Normal-inverse gamma distribution with parameters µ0,
ν, α, and β. These parameters are estimated form the data. Once the prior parameters are known,
we can then compute the posterior predictive distribution, which is a t-distribution in the case of a
Gaussian likelihood:

p(zi|z\i) = t2α′

(
zi|µ

′
,
β

′
(ν

′
+ 1)

ν′ + α′

)
, (10)

where

µ
′
=

νµ0 + nz̄\i
ν + n

ν
′
= ν + n

α
′
= α+

n

2

β
′
= β +

1

2

n∑

zj∈z\i

(zj − z̄\i)
2 +

nν(z̄\i − µ0)
2

2(ν + n)

with n being the number of left-out repeats z\i and z̄\i being the mean of the left-out repeats. As
the final step, to compute the posterior predictive in the original log space, we plug Eq. 10 back into
Eq. 9:
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p(yi|q,y\i) = t2α′

(
log(yi)|µ

′
,
β

′
(ν

′
+ 1)

ν′ + α′

)
· 1

yi
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D IN WHICH CASES DOES THE BAYESIAN GS OUTPERFORM THE PE

The PE approach to obtain a Gold Standard model fails in many cases which is the reason behind
using the Bayesian Posterior Predictive approach instead. Fig. S1 provides insight into why and in
which cases the PE fails compared to the Bayesian GS. In summary: This is due to the combination
of low-valued responses that fall into the positive distribution and the sparsity in the data:
Target responses that are slightly greater than the threshold value are not covered by the uniform
distribution of the zero part but are an extreme value for the positive part (left panel). When this
coincides with overfitting due to sparse data, i.e. low proportion q of positive responses (right panel),
the Point Estimate results in a low log-likelihood. Note that the reason for this not being visible for
the smallest value of q (q = 0) is that in this case no positive responses were available to estimate the
PE parameters on. Since the target trial could still be positive, we needed to assign the PE parameters
of the positive part of the distribution as a hyper parameter. This is equivalent to applying a delta-peak
prior and results in a quasi-Bayesian approach for the PE in these rare cases.

Fig. S1: Comparison between Bayesian and Point Estimate (PE) Gold Standard models. Since the two
GS models share the same zero distribution, this analysis was only performed on the responses that
fall into the positive distribution (y ≥ τ ). a: Distance of the positive response from the zero-threshold
τ as a function of the difference between Bayesian and the PE GS models. b: Fraction q\i of positive
leave-one-out responses y\i as a function of the difference between Bayesian and PE GS models.
Data is per neuron, per repeat, and per stimulus).
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E NORMALIZED INFORMATION GAIN IN TERMS OF KL DIVERGENCES

Here we provide the normalized information gain formulated in terms of KL divergence and derive
the estimate presented in Eq.1:

NInGa =
⟨DKL [p(y | x)∥p0(y)]⟩x − ⟨DKL[p(y | x)∥p̂(y | x)]⟩x
⟨DKL [p(y | x)∥p0(y)]⟩x − ⟨DKL [p(y | x)∥p∗(y | x)]⟩x

=

〈〈
log p(y|x)

p0(y)

〉
y|x

〉

x

−
〈〈

log p(y|x)
p̂(y|x)

〉
y|x

〉

x〈〈
log p(y|x)

p0(y)

〉
y|x

〉

x

−
〈〈

log p(y|x)
p∗(y|x)

〉
y|x

〉

x

=

〈
⟨log p̂(y | x)⟩y|x

〉
x
−
〈
⟨log p0(y)⟩y|x

〉
x〈

⟨log p∗(y | x)⟩y|x
〉
x
−
〈
⟨log p0(y)⟩y|x

〉
x

≈
∑

i (log p̂(yi | xi)− log p0(yi))∑
i (log p∗(yi | xi)− log p0(yi))
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F RELATION BETWEEN NORMALIZED INFORMATION GAIN AND FEVE

Here we go through the complete derivation underlying Eq. 5. Let us start by defining FEVE:

FEV E = 1−
〈
(µx − µ̂x)

2
〉
x

σ2
s

, (11)

where µx is the true conditional mean, µ̂x the estimated conditional mean by the model, and σ2
s is the

signal variance. An estimator of FEVE was previously used by Cadena et al. [7] (which we also use
to compute FEVE in Fig. 5b):

FEV E = 1−
〈
(µx − µ̂x)

2
〉
x

σ2
s

= 1−
〈
(µx − µ̂x)

2
〉
x

σ2
y − σ2

ϵ

= 1−
σ2
ϵ +

〈
(µx − µ̂x)

2
〉
x
− σ2

ϵ

σ2
y − σ2

ϵ

= 1−
〈
(y − µx)

2
〉
x,y

+
〈
(µx − µ̂x)

2
〉
x
−

=0︷ ︸︸ ︷
2 ⟨(y − µx)(µx − µ̂x)⟩x,y −σ2

ϵ

σ2
y − σ2

ϵ

= 1−
〈
(y − µx + µx − µ̂x)

2
〉
x,y

− σ2
ϵ

σ2
y − σ2

ϵ

= 1−
〈
(y − µ̂x)

2
〉
x,y

− σ2
ϵ

σ2
y − σ2

ϵ

, (12)

where σ2
y = Var(y) and σ2

ϵ = Ex[Var(y|x)] are estimated from the data. Now let us expand
⟨DKL[p(y|x)||p̂(y|x)]⟩x in the case of a Gaussian likelihood:

⟨DKL[p(y|x)||p̂(y|x)]⟩x = ⟨log (p(y|x))− log(p̂(y|x))⟩x,y

=

〈
log
((

2πσ2
x

)−1/2
)
− (yx − µx)

2

2σ2
x

− log
((

2πσ̂2
x

)−1/2
)
+

(yx − µ̂x)
2

2σ̂2
x

〉

x,y

=

〈
log

(
σ̂x

σx

)
− (yx − µx)

2

2σ2
x

+
(yx − µ̂x)

2

2σ̂2
x

〉

x,y

=

〈
log

(
σ̂x

σx

)
− (yx − µx)

2

2σ2
x

〉

x,y

+

〈
(yx − µx + µx − µ̂x)

2

2σ̂2
x

〉

x,y

=

〈
log

(
σ̂x

σx

)
− 1

2

〉

x

+

〈
(yx − µx)

2 + (µx − µ̂x)
2 + 2(yx − µx)(µx − µ̂x)

2σ̂2
x

〉

x,y

=

〈
log

(
σ̂x

σx

)
− 1

2

〉

x

+

〈〈
(yx − µx)

2
〉
y|x + (µx − µ̂x)

2 + 2

=0︷ ︸︸ ︷
⟨(yx − µx)(µx − µ̂x)⟩y|x

2σ̂2
x

〉

x

=

〈
log

(
σ̂x

σx

)
− 1

2

〉

x

+

〈
σ2
x + (µx − µ̂x)

2

2σ̂2
x

〉

x

=

〈
log

(
σ̂x

σx

)
− 1

2
+

σ2
x + (µx − µ̂x)

2

2σ̂2
x

〉

x

=

〈
log

(
σ̂x

σx

)
− 1

2
+

σ2
x

2σ̂2
x

+
(µx − µ̂x)

2

2σ̂2
x

〉

x

= ⟨f(σ̂x)⟩x +
1

2

〈
(µx − µ̂x)

2

σ̂2
x

〉

x

(13)
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where σ̂x is the noise estimated by the model, σx is the true noise, and f(σ̂x) = log
(

σ̂x

σx

)
− 1

2 +
σ2
x

2σ̂2
x

.
Note that if σ̂x = σx then f(σ̂x) = 0, and we would have:

⟨DKL[p(y|x)||p̂(y|x)]⟩x =
1

2

〈
(µx − µ̂x)

2

σ̂2
x

〉

x

The term with the expectation can further be simplified. If the noise variance σ̂2
x is not dependent

on the stimulus x, which is the case for a Gaussian distribution, then σ̂2
x = σ̂2

ϵ =
〈
σ̂2
x

〉
x

and we can
simply bring it outside the expectation:

〈
(µx − µ̂x)

2

σ̂2
x

〉

x

=

〈
(µx − µ̂x)

2
〉
x

σ̂2
ϵ

(14)

This would also mean that f(σ̂x) = f(σ̂ϵ) = log
(

σ̂ϵ

σϵ

)
− 1

2 +
σ2
ϵ

2σ̂2
ϵ

. However, if the noise variance is
stimulus-dependent then the term with the expectation can be approximated via first-order Taylor ex-
pansion around the expected values of the numerator and denominator c = (

〈
(µx − µ̂x)

2
〉
x
,
〈
σ̂2
x

〉
x
):

〈
(µx − µ̂x)

2

σ̂2
x

〉

x

≈
〈
(µx − µ̂x)

2
〉
x

⟨σ̂2
x⟩x

≈
〈
(µx − µ̂x)

2
〉
x

σ̂2
ϵ

Since we are dealing with a Gaussian distribution we will continue with the case where noise variance
is not stimulus-dependent. However, the derivation applies to the approximate case too. Let us now
relate Eq. 11 and Eq. 13:

⟨DKL[p(y|x)||p̂(y|x)]⟩x = f(σ̂ϵ) +
1

2

〈
(µx − µ̂x)

2
〉
x

σ̂2
ϵ

= f(σ̂ϵ) +
1

2

〈
(µx − µ̂x)

2
〉
x

σ2
ϵ

× σ2
s

σ2
s

= f(σ̂ϵ) +
1

2

〈
(µx − µ̂x)

2
〉
x

σ2
s

× σ2
s

σ̂2
ϵ

= f(σ̂ϵ) +
1

2
(1− FEV E)× σ2

s

σ̂2
ϵ

(15)

Note that when estimated noise variance matches the true noise variance, then Eq. 15 becomes:

⟨DKL[p(y|x)||p̂(y|x)]⟩x =
1

2
(1− FEV E)× SNR
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G RELATION BETWEEN NORMALIZED INFORMATION GAIN AND
CORRELATION

Another commonly used metric is the trial-averaged correlation between the model prediction
µ̂x = ⟨ŷ|x⟩ŷ|x and true responses µx = ⟨y|x⟩y|x:

ρ(µ̂x, µx) =
Cov(µ̂x, µx)√

σ̂2
s · σ2

s

To relate this quantity to ⟨DKL[p(y|x)||p̂(y|x)]⟩x, we start by expanding Eq. 14. Specifically, we
add and subtract µ = ⟨µx⟩ = ⟨µ̂x⟩ in the numerator:

〈
(µx − µ̂x)

2
〉
x

σ̂2
ϵ

=

〈
((µx − µ)− (µ̂x − µ))2

〉
x

σ̂2
ϵ

=

〈
(µx − µ)2 + (µ̂x − µ)2 − 2(µx − µ)(µ̂x − µ)

〉
x

σ̂2
ϵ

=
σ2
s + σ̂2

s − 2Cov(µ̂x, µx)

σ̂2
ϵ

=
σ2
s + σ̂2

s − 2Cov(µ̂x, µx)

σ̂2
ϵ

× σ2
s

σ2
s

=
σ2
s + σ̂2

s − 2Cov(µ̂x, µx)

σ2
s

× σ2
s

σ̂2
ϵ

=

(
1 +

σ̂2
s

σ2
s

− 2σ̂s

σs
ρ(µ̂x, µx)

)
× σ2

s

σ̂2
ϵ

Putting this back into Eq. 13:

⟨DKL[p(y|x)||p̂(y|x)]⟩x = f(σ̂ϵ) +
1

2

(
1 +

σ̂2
s

σ2
s

− 2σ̂s

σs
ρ(µ̂x, µx)

)
× σ2

s

σ̂2
ϵ

(16)

Again, if the model’s noise variance matches the true noise variance (σ2
ϵ = σ̂2

ϵ ), we have:

⟨DKL[p(y|x)||p̂(y|x)]⟩x =
1

2

(
1 +

σ̂2
s

σ2
s

− 2σ̂s

σs
ρ(µ̂x, µx)

)
× SNR

If we further assume that the model’s signal variance matches the true signal variance, σ̂2
s = σ2

s , we
get:

⟨DKL[p(y|x)||p̂(y|x)]⟩x = (1− ρ(µ̂x, µx))× SNR
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H OPTIMIZING CORRELATION ONLY FOCUSES ON MATCHING
TRIAL-AVERAGED RESPONSES

In addition to trial-averaged correlation, neural encoding models are also evaluated via single-trial
correlation [23]. While in the trial-averaged case the correlation obviously only focuses on conditional
means, here we show this is the case even for single-trial correlation. That is, optimizing single-trial
correlation only focuses on matching the conditional means:

ρst(µ̂x, y) =
Cov(µ̂x, y)√

σ̂2
sσ

2
y

=
Cov(µ̂x, y)√

σ̂2
sσ

2
y

=
Cov(E[µ̂x|x],E[y|x]) +

=0︷ ︸︸ ︷
E[Cov(µ̂x, y|x)]√

σ̂2
sσ

2
y

=
Cov(µ̂x, µx)√

σ̂2
sσ

2
y

where µ̂x is the predicted conditional mean, µx is the trial-averaged response, σ̂2
s is the model signal

variance, and σ2
y is the total data variance computed across all trials. Note that this quantity is

invariant to affine transformations of the predicted conditional mean.
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I OTHER APPROACHES FOR A GS ESTIMATE

I.1 MAXIMUM A POSTERIORI ESTIMATE

Instead of using the full posterior predictive to obtain a good GS model, one can use the maximum a
posteriori (MAP) estimate of the distribution parameters. Here, we show the derivation of the MAP
estimate for the zero-inflated Log-Normal distribution. However, it does not perform as well as the
posterior predictive approach, see Fig. S2.

The maximum a posteriori estimator of a parameter ϕ ∈ {θ0, θ1, q} of a zero inflated likelihood can
be computed as

ϕ̂MAP = argmax
ϕ

p(y\i|θ, q)p(θ)p(q)

= argmax
ϕ

p(y0
\i|θ0)p(θ0)p(y1

\i|θ1)p(θ1) · qn1(1− q)n0p(q)

= argmax
ϕ

log
(
p(y0

\i|θ0)p(θ0)
)
+ log

(
p(y1

\i|θ1)p(θ1)
)
+ log (qn1(1− q)n0p(q))

where the second step is analogous to Eq. 7.

MAP estimate for q. In order to obtain the maximum a posteriori estimator for q we set the deriva-
tive with respect to q to zero. As a prior for q we choose a Beta distribution p(q) = Beta(q;α′′, β′′):

q̂MAP = argmax
q

log (qn1(1− q)n0p(q))

= argmax
q

log

(
qn1(1− q)n0

qα
′′−1(1− q)β

′′−1

B(α′′, β′′)

)

= argmax
q

log
(
qn1+α′′−1(1− q)n0+β′′−1

)

︸ ︷︷ ︸
:=f(q)

∂f(q)

∂q
=

∂

∂q

[
log
(
qn1+α′′−1(1− q)n0+β′′−1

)]

=
∂

∂q
[(n1 + α′′ − 1) log(q) + (n0 + β′′ − 1) log(1− q)]

= (n1 + α′′ − 1)
1

q
− (n0 + β′′ − 1)

1

1− q
!
= 0

q̂MAP =
n1 + α′′ − 1

n0 + n1 + α′′ + β′′ − 2

MAP estimate for θ1. The parameters θ1 are all parameters of the non-zero part of the distribution.
In the case of a LogNormal distributions, this is θ1 ∈ {µ, σ2} and we assume a Normal-Inverse-
Gamma prior p(θ1) = NG−1(µ′′, λ′′, α′′, β′′). The posterior then follows a Normal-Inverse-Gamma
distribution as well

p(y1
\i|θ1)p(θ1) ≈ p(θ1|y1

\i)

= NG−1(µ′, λ′, α′, β′)

=

√
λ′β′α′

√
2πΓ (α′)

1

σ

(
1

σ2

)α′+1

exp

(
−2β′ + λ′(µ− µ′)2

2σ2

)
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with

µ′ =
µ′′ν′′ + n1y

ν′′ + n1

ν′ = ν′′ + n1

α′ = α′′ +
n1

2

β′ = β′′ +
1

2

n1∑

yj∈y1
\i

(yj − y)2 +
n1ν

′′(y − µ′′)2

2(ν′′ + n1)

where y := 1/n1

∑
yj∈y1

\i
yj

The maximum a posteriori estimator of µ can then be obtained as follows:

µ̂MAP = argmax
µ

log
(
p(y1

\i|θ1)p(θ1)
)

= argmax
µ

log

(
exp

(
−2β′ + λ′(µ− µ′)2

2σ2

))

= argmax
µ

−λ′(µ− µ′)2

2σ2

= µ′

And for σ2:

σ̂2
MAP = argmax

σ2

log

(
1

σ

(
1

σ2

)α′+1

exp

(
−2β′ + λ′(µ− µ′)2

2σ2

))

︸ ︷︷ ︸
:=f(σ2)

∂f(σ2)

∂σ2
=

∂

∂σ2

(
−1

2
log σ2 − (α′ + 1) log σ2 − 2β′ + λ′(µ− µ′)2

2

1

σ2

)

= (−α′ − 3

2
)
1

σ2
+

2β′ + λ′(µ− µ′)2

2

1

σ4

!
= 0

σ̂2
MAP =

2β′ + λ′ (µ̂MAP − µ′)2

2α′ + 3

MAP estimate for θ0 In general, the maximum a posteriori estimator for θ0 can be obtained
analogously. In our case we model the zero part of the response distribution with a uniform distribution
which does not have a parameter θ0.
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I.2 GOLD STANDARD MODEL AS A MIXTURE OF NULL AND POSTERIOR PREDICTIVE
DISTRIBUTIONS

For some individual neurons and images the null model performs better than the Gold Standard
model because the prior of the GS model is fitted per neuron but not per image. In cases with few
positive responses where the GS model has to rely heavily on the prior, the performance can thus be
sub-optimal for individual images. One idea, suggested by one of the reviewers, to circumvent this is
to build a mixture model p∗∗ between the GS p∗ and Null p0 model:

p∗∗(yi|y\i, y) = wi · p∗(yi|y\i) + (1− wi) · p0(y),
where w ∈ [0, 1]. We optimized w in a leave-one-out manner, just like p∗ itself is obtained in a
leave-one-out-manner: we obtained a w for each target repeat (per neuron per image) by optimizing
p∗∗ with respect to w on the other repeats. However, the resulting GS mixture model does not
outperform the Bayesian GS model, see Fig. S2.

Fig. S2: Comparison of different methods to obtain an upper bound (GS): a–d: Various GS model
log-likelihood vs. the Null model log-likelihood. Data is per neuron (averaged over repeats and
stimuli). e: The full Bayesian Posterior Predictive outperforms the Point Estimate, the Maximum a
posteriori (MAP), and the Mixture model. Each bar is the difference between the corresponding GS
model and the Null model, averaged over repeats, stimuli, and neurons. Error bars correspond to the
SEM and evaluate to ±0.03 for the PE and ±0.002 for the other GS models.

27

136



Published as a conference paper at ICLR 2023

J NINGA ACROSS DIFFERENT DATASETS

We performed an analysis similar to Fig. 4c (blue bar) but for multiple datasets. We trained the
same model described in section 3.2 on five different additional datasets from [23]. Our results
show that using NInGa allows a better comparison of models that are trained on different datasets
which can exhibit different levels of achievable performance (Fig. S3, compare left vs. right) . When
models with the same architecture are trained on different datasets the resulting performances are
more similar in NInGa (Eq. 1) than in the unnormalized IG (i.e. the numerator of Eq. 1), because the
performance of the model is reported relative to the Null and Gold Standard model.

1 2 3 4 5 6
Dataset

0.0

0.1

0.2

0.3

IG

0.0
0.2
0.4
0.6
0.8

NI
nG

a

Fig. S3: Comparison of Trained Model performance on different datasets. Left: Models evaluated on
simple Information Gain (IG), i.e. the numerator of Eq. 1. Right: Models evaluated on Normalized
Information Gain (NInGa), i.e. the full Eq. 1.
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