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ABSTRACT

Deep neural networks set the state-of-the-art across many tasks in computer vi-
sion, but their generalization ability to simple image distortions is surprisingly
fragile. In contrast, the mammalian visual system is robust to a wide range of dis-
tortions. Recent work suggests that this generalization power can be explained by
useful inductive biases encoded in the representations of visual stimuli throughout
the visual cortex. Here, we successfully leveraged these inductive biases with a
multi-task learning approach: we jointly trained a deep network to perform image
classification and to predict neural activity in macaque primary visual cortex (V1)
in response to the same natural stimuli. We measured the out-of-distribution gen-
eralization abilities of our resulting network by testing its robustness to common
image distortions. We found that co-training on monkey V1 data indeed leads
to increased robustness despite the absence of those distortions during training.
Additionally, we show that our network’s robustness is often very close to that of
an oracle network where parts of the architecture are directly trained on the test
corruptions. Finally, our results also demonstrate that, as the network’s represen-
tations become more brain-like, their robustness consistently improves. Overall,
our work expands the promising research avenue of transferring inductive biases
from biological to artificial neural networks.

1 INTRODUCTION

Although machine learning algorithms have witnessed enormous progress thanks to the deep learn-
ing revolution (LeCun et al., 2015), current state-of-the-art deep models (Hinton et al., 2012; Rawat
& Wang, 2017; Krizhevsky et al., 2012) still fall behind the generalization abilities of biological
brains. A growing body of literature (Szegedy et al., 2013; Geirhos et al., 2018) shows that these
models are brittle when tested on out-of-distribution data samples, i.e. their ability to extrapolate is
weak, unlike the mammalian visual system which is known to be very robust. For instance, Geirhos
et al. (2018) show that humans can easily identify the objects in images that were exposed to com-
mon distortions, while the performance of state-of-the-art convolutional neural networks (CNNs)
strongly deteriorates on those images. This gap in extrapolation has been attributed to differences
in feature representations (Geirhos et al., 2019; Brendel & Bethge, 2019) and internal strategies for
decision making (Geirhos et al., 2020) between humans and CNNs.

Historically, neuroscience has inspired many innovations in artificial intelligence (Hassabis et al.,
2017; Fukushima, 1980). While most of the transfer between neuroscience and machine learning
happens on the implementational level (Marr, 1982; Hassabis et al., 2017), too little is known about
the structure of the brain at the level of detail needed to transfer functional generalization proper-
ties (Sinz et al., 2019). To transfer functional inductive biases from the brain to deep neural networks
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Figure 1: VGG-19 architecture for MTL on image classification and neural prediction.

(DNNs), it may thus be better to consider the representational level by capturing biological feature
representations in the responses of biological neurons to visual input – abstracting away from the
implementational level. Prior work suggests that enforcing brain-like representations in CNNs via
neural data from humans (Fong et al., 2018), mice (Li et al., 2019), or monkeys (Federer et al., 2020)
can indeed have beneficial effects on the generalization abilities of these networks.

Our work expands on this line of research, by exploring the extrapolation capabilities of multi-task
learning models (MTL; Caruana (1993)) trained on image classification and prediction of neural
responses from monkey V1 – as proposed in the neural co-training hypothesis by Sinz et al. (2019).
We implement MTL via a shared representation between image classification and neural response
prediction (Fig. 1). The motivation is that MTL with neural data regularizes the shared representation
to inherit good functional inductive biases from neural data, and to help it extrapolate better to out-
of-distribution images, thus yielding a more robust neural network.

We empirically investigate this idea using common corruptions on tiny ImageNet (TIN)1. We show
that 1 MTL can transfer robustness properties even when trained on undistorted images only, and
2 MTL with monkey V1 data has a positive effect on robustness. We 3 analyze our findings

using a robust oracle model quantifying what performance improvement can be expected given that
only parts of the network are shared during MTL (Fig. 1). Our results provide evidence in favor
of the neural co-training hypothesis and further expand the scope of prior results, by exploring the
relationship between brain-like representations and robustness.

2 NEURAL MULTI-TASK LEARNING

Data Images for the classification task and the neurophysiological experiments are based on Ima-
geNet (Deng et al., 2009). For the classification task, we use a grayscale version of TIN1. For neural
prediction, we use neurophysiological recordings of 458 neurons from the primary visual cortices
(area V1) of two fixating awake macaque monkeys, recorded with a 32-channel depth electrode dur-
ing 15 (monkey 1) and 17 (monkey 2) sessions. In each session, approximately 1000 trials of 15
images are presented – each image for 120ms. We extract the spike count from 40ms to 160ms after
image onset. The image set presented to the monkey consists of 24075 images from 964 categories
– 25 images per category. Of those, 24000 were designated to model training and 75 to testing. For
each training trial, a new subset of 15 images was randomly sampled from the training set. Test
images are displayed in fixed order during 5 test trials, randomly interleaved among training tri-
als, and repeated 40-50 times per session. All images are converted to gray-scale and presented at
420×420 px, covering 6.7° visual angle for the monkey, resulting in 63 pixels per degree (ppd). For
model training, images are downscaled and cropped to 64×64 pixels, corresponding to 14.5 ppd.
Similar to Li et al. (2019), we first train a model on recorded neural data and use it to predict neural
responses for all input images of the TIN classification data. These predicted responses form the
neural dataset we use in MTL. This allows us to balance the amount of data we have for each task
and removes trial-to-trial noise in the neural data.

Models All our experiments are based on a variant of the VGG-19 architecture (Simonyan & Zisser-
man, 2015) with additional batch normalization layers (Ioffe & Szegedy, 2015) after every convolu-
tional layer (Figure 1). To allow for arbitrary image sizes, we make the network fully convolutional

1http://cs231n.stanford.edu/
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by replacing the fully connected readout by three convolutional layers with dropout of 0.5 after the
first two, and a final pooling operation and softmax (Bridle, 1990). We predict neural responses
by feeding the output of the convolutional layer conv-3-1 (Cadena et al., 2019) into a Gaussian
readout (Lurz et al., 2021) yielding a spike count prediction per neuron and image.

Training We use cross-entropy loss for single task image classification and Poisson loss for single
task neural prediction. For multitask training, the challenge is finding the optimal balance between
the two objectives to achieve reasonable performance on each task individually, and allow both
tasks to benefit from each other by learning common representations. To put both objectives on
the same scale, we use their corresponding negative log-likelihood and learn their balance through
trainable observation noise parameters σ (Kendall et al., 2018). This yields a combined loss of
1
σ2
c
LCE(θ,ψc) +

1
2σ2

n
LMSE(θ,ψn) + log σc + log σn where θ are the shared parameters and ψc, σc

and ψn, σn are the task-specific parameters for classification and neural prediction, respectively.
The classification objective LCE is the standard cross-entropy, analogous to the single-task case.
For MTL on neural data, we use mean-squared error LMSE because the targets are predictions from
the network trained on neural data and not the original noisy neural responses. For optimization,
we accumulate the gradients over the different losses to optimize the shared parameters θ in a sin-
gle combined gradient step. By definition, the two loss components will contribute equally to the
learning process. However, we can manually steer the focus towards either task via the proportion
(batch-ratio) of neural to classification batches accumulated for each optimization step.

We standardize all pixel values with the mean and standard deviation of the training set, and augment
the images by random cropping, horizontal flipping, and rotations in a range of 15◦ for classification.
We use stochastic gradient descent with momentum in all classification-related cases, and Adam for
single task neural prediction (Kingma & Ba, 2015). We use a batch-size of 128 and weight decay
with a factor of 5 · 10−4 throughout all our experiments, as well as a batch-ratio of 1:1 during
MTL. The initial learning rate is determined for each task individually and reduced by a (task-
specific) factor via an adaptive learning schedule. The schedule reduces the learning rate depending
on the validation performance – classification performance in the case of MTL – when the rate of
improvement is not above a 10−4 for 5 consecutive epochs. The training is stopped when we reach
either five learning rate reduction steps or a maximum number of epochs, that we define for each
task. This training setup was determined via prior hyper-parameter searches on the validation set.
We repeat every experiment with five different random initializations. Error bars were obtained by
bootstrapping (250 repetitions).

3 RESULTS

Our main goal is to find evidence for improved extrapolation abilities. To this end, we evaluate our
model’s robustness on distorted copies of the TIN validation set – used as a test set in our experiments
– following the corruption paradigm in (Hendrycks & Dietterich, 2019). We reproduce the distor-
tions with an on-the-fly implementation (Michaelis et al., 2019), drop glass blur because it is com-
putationally expensive, and refer to our resulting test set as TIN-TC. We quantify the robustness for

1 2 3 4 5
Corruption Severity

0

20

40

A
cc

ur
ac

y
[%

]

Pixelate

1 2 3 4 5
Corruption Severity

0

20

40
Impulse Noise

1 2 3 4 5
Corruption Severity

0

20

40
Contrast

Baseline MTL-Monkey MTL-Shuffled MTL-Oracle Oracle

Figure 2: Exemplary classification results on TIN-TC, showing 3 corruption types with the best
(left), median (center) and worst (right) robustness score for MTL-monkey across 5 increasing levels
of severity each.
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Figure 3: A Robustness scores for each model grouped by corruption category, as defined in
Hendrycks & Dietterich (2019). B Overall robustness scores for our 5 different models. C Ro-
bustness and neural prediction correlate positively for MTL-monkey models across 12 different
batch ratios and 5 random seeds per model (grey line: linear regression from robustness to neural
performance). A darker color indicates higher accuracy on the clean TIN test set.

each of the remaining 14 noise types and five levels of corruption severity separately, and compute a
summary robustness score adopted from Hendrycks & Dietterich (2019): 1

14

∑14
c=1A

robust
c /A

baseline
c ,

where Ac = 1
5

∑5
l,s=1Al,c,s denotes the mean accuracy on corruption c across levels l and seeds s.

Since co-training only affects the shared representation up to layer conv-3-1, we cannot expect
the network to be as robust as a network where all layers are trained on data augmented with the
image distortions. To explore the limits on robustness resulting from sharing lower layers only, we
train a classification model with a 1:1 mixture of clean and distorted images drawn from the pool
of 14 IN-C corruptions, freeze all layers up to conv-3-1, and re-train the remaining network on
clean data only. To push the robustness to the frozen part, we add a second loss that penalizes the
Euclidean distance between the outputs of layer conv-3-1 for the same image augmented with
different corruptions – similar to Chen et al. (2020). We refer to this model as the oracle since it has
access to the image distortions during training – unlike our MTL models.

MTL can successfully transfer robustness. To demonstrate that MTL can in principle transfer
robustness properties without showing distorted images in training, we generate neural responses
from our oracle model for all images of the clean TIN dataset by freezing the oracle model and
training a Gaussian readout on top of layer conv-3-1 for 10 epochs to predict V1 data. Then, we
train a model on the resulting neural responses alongside clean image classification using MTL. We
call this model MTL-oracle. Comparing the robustness of this model on TIN-TC to the robustness
of the single-task baseline model trained on clean TIN only, we see clear signs of successful transfer
(Fig. 2 and Fig. 3A,B) although the MTL network has never seen the image distortions of TIN-TC.
In fact, the MTL-oracle performs close to the oracle model in most cases.

Co-training with monkey V1 increases robustness. The results on MTL-oracle show that MTL
on neural responses predicted from a robust network on undistorted images successfully transfers
robustness properties. For our main experiment, we use MTL on neural responses from the single
task monkey V1 model (see section 2), and refer to it as MTL-monkey. This model has never seen
distorted images at any point. We call the corresponding control model trained on the same neural
data but shuffled across images MTL-shuffled. Similar to the MTL-oracle model, MTL-monkey
generalizes better to the TIN-TC image distortions than the baseline model, although it has not seen
distorted images at any stage during the training process. We find increased robustness for 9/14
image corruptions. This improvement is mainly observed across 3 groups of distortions: Noise,
Blur and Digital (Fig. 3A), whereas MTL-monkey did not exceed the baseline performance for the
Weather group. The shuffled control did not provide any benefits (Fig. 2 and Fig. 3A,B).

The more “brain-like” the neural network, the better it generalizes to image distortions. If
features in the neural data affect the robustness, we would expect that the robustness correlates pos-
itively with the neural prediction performance in MTL-monkey. To test this hypothesis, we create
a pool of MTL-monkey models with varying neural performance by altering the amount of neu-
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ral data introduced during co-training through the batch-ratio hyperparameter. We find that both
the model accuracy on clean images and neural prediction improves the network’s robustness (Fig-
ure 3C; p < 10−5 (t-test) for both factors in a 2-factor linear regression). Analysis for MTL-shuffled
shows no connection between robustness and neural performance (p > 0.5 for neural prediction and
p < 10−13 for clean accuracy). Overall, our results are consistent with previous work finding a
positive correlation between model robustness and brain-likeness (Dapello et al., 2020).

Conclusion and Outlook To the best of our knowledge, this work is the first that investigates the
neural co-training hypothesis, adding further evidence to existing literature that useful representa-
tional inductive biases can be transferred from neural data. By carefully controlling the amount of
neural data and robustness in the neural data for MTL through the batch ratio parameter and the
MTL-oracle model respectively, we were able to show that robustness correlates with neural pre-
diction performance and that the MTL-monkey model is close to the expected ideal performance in
many cases. In the future, we hope to include higher brain areas for neural co-training to achieve
stronger effects and robustness against more complex distortions.
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