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Temporal adaptation enhances efficient contrast gain control on natural images

Fabian Sinz & Matthias Bethge
{fabee|matthias}dbethgelab.org

lInstitute for Neurobiology, Department for Neuroethology, “Werner Reichardt Centre for Integrative Neuroscience, *Bernstein Center for
Computational Neuroscience

CONTEXT DIVISIVE NORMALIZATION AND RADIAL FACTORIZATION

The redundancy reduction hypothesis postulates that neural rep- The central mechanisms of di-
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MATHEMATICS

Redundancy ~ Multi-Information
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Naka-Rushton Distribution A: Divisive normalization model used in this study: Natural im-
age patches are linearly filtered and nonlinearly transformed by

divisive normalization or radial factorization. Linear filter re-

sponses still exhibit dependencies in the form of variance cor-
relations (bow-tie plots). These dependencies are decreased by

divisive normalization and radial factorization. B: Redundancy
measured via multi-information after divisive normalization, ex-
tended divisive normalization, and radial factorization: divisive
normalization leaves a substantial amount of residual redun-

dancy. C: Radial distributions for which divisive normalization
DYNAMIC MODEL
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A B would be optimal. Extended divisive normalization achieves
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m—%:95% quanile of I 1, I, - Simulated eye movements on a image from the van Hateren ical measurements have demon-
narieth 0.1- database. Local microsaccades are simulated with Brownian strated that individual neurons shift
. motion with a standard deviation of 5px. In this example, 8 x 8 the steepest region of their contrast
0.0 patches are extracted around the fixation location and whitened. response curve towards the ambient
Values of ||y|| for the extracted patches are plotted along the contrast level.
x-axis. The different curves are the maximum likelihood Naka-
. : Rushton distributions for which o2 was estimated from the data
r points of the same color.

A: Histogram of ||y|| for natural image patches sampled with simulated eye movements: The dynamically adapting o predicts a

mixture of Naka-Rushton distributions for ||y ||, which closely matches the empirical distribution. B: Redundancy reduction performance Code and papers are available at
for simulated eye movement data. The dynamically adapting ¢ achieves an almost optimal redundancy reduction performance. C:
Dynamics of the adaptive o: values of r; = ||y || plotted against its o, adapted to r;_;. The correlated values indicate that the shift http://www.bethgelab.org

of the contrast response curve (controlled by o) tracks the ambient contrast level.




