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CONTEXT
The redundancy reduction hypothesis postulates that neural rep-

resentations adapt to sensory input statistics such that their re-

sponses become as statistically independent as possible. Based

on this hypothesis, many properties of early visual neurons—

like orientation selectivity or divisive normalization—have been

linked to natural image statistics. Divisive normalization in par-

ticular models a widely observed neural response property: The

divisive inhibition of a single neuron by a pool of others. This

mechanism has been shown to reduce the redundancy among

neural responses to typical contrast dependencies in natural im-

ages. Here, we compare a standard model of divisive normaliza-

tion to a functionally similar, but statistically optimal mechanism

called radial factorization.

DIVISIVE NORMALIZATION AND RADIAL FACTORIZATION
The central mechanisms of di-
visive normalization are (i) lin-
ear filtering y = Wx of
an image patch x and (ii) ra-
dial rescaling of the filter re-
sponses z = g(‖y‖) y

‖y‖ .
Whitened natural image patches
y still exhibit higher order de-
pendencies. For Lp-spherically
symmetric distributions, radial
rescaling can remove all re-
dundancy via radial factoriza-
tion ‖y‖ 7→ F−1

χ (F%(‖y‖))).
We compare the radial rescaling
‖y‖ 7→ κ‖y‖/

√
σ2 + ‖y‖2 of

divisive normalization to the opti-
mal rescaling of radial factoriza-
tion.
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After whitening,
the distribution
of natural image
patches is almost
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spherical and exhibits leptokurtotic
marginals. Since the Gaussian is the
only spherically symmetric and factorial
density, it must exhibit higher order
dependencies.

REDUNDANCY MEASUREMENTS
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A: Divisive normalization model used in this study: Natural im-

age patches are linearly filtered and nonlinearly transformed by

divisive normalization or radial factorization. Linear filter re-

sponses still exhibit dependencies in the form of variance cor-

relations (bow-tie plots). These dependencies are decreased by

divisive normalization and radial factorization. B: Redundancy

measured via multi-information after divisive normalization, ex-

tended divisive normalization, and radial factorization: divisive

normalization leaves a substantial amount of residual redun-

dancy. C: Radial distributions for which divisive normalization

(red) and its extended version ‖y‖
γ
2
+δ/

√
σ2 + ‖y‖γ (blue)

would be optimal. Extended divisive normalization achieves

good redundancy reduction, but leads to a physiologically im-

plausible shape of the contrast response.

CONTRAST ADAPTATION
Shifts of the (individual) contrast
response function are realized by
changes in σ2. Neurophysiolog-
ical measurements have demon-
strated that individual neurons shift
the steepest region of their contrast
response curve towards the ambient
contrast level. ||y||

||z||

SUMMARY
: Divisive normalization has been shown to reduce

higher order dependencies on natural images.
& : The central mechanisms of divisive normaliza-

tion are (i) linear filtering y = Wx of an image patch
x and (ii) radial rescaling of the filter responses z =
g(‖y‖) y

‖y‖

: Radial factorization is an optimal redundancy reduc-
tion transform for these two mechanism.

& : We compared the amount of the redundancy
removed by divisive normalization and radial factoriza-
tion.

: Divisive normalization performs suboptimally.
& : We analyze why by deriving the distribution for

which divisive normalization would perform optimal.
: Results demonstrate that static divisive normaliza-

tion cannot easily be improved without becoming biolog-
ically implausible.

: We propose a dynamic divisive normalization model
that adapts to the ambient contrast level under naturalis-
tic viewing conditions (simulated eye movements) which
substantially improves the redundancy reduction perfor-
mance.

: Our results indicate that experimentally observed
temporal dynamics of divisive normalization might be
critical for redundancy reduction.

DYNAMIC MODEL
A
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Simulated eye movements on a image from the van Hateren
database. Local microsaccades are simulated with Brownian
motion with a standard deviation of 5px. In this example, 8 × 8
patches are extracted around the fixation location and whitened.
Values of ‖y‖ for the extracted patches are plotted along the
x-axis. The different curves are the maximum likelihood Naka-
Rushton distributions for which σ2 was estimated from the data
points of the same color.

A: Histogram of ‖y‖ for natural image patches sampled with simulated eye movements: The dynamically adapting σ2 predicts a
mixture of Naka-Rushton distributions for ‖y‖, which closely matches the empirical distribution. B: Redundancy reduction performance
for simulated eye movement data. The dynamically adapting σ2 achieves an almost optimal redundancy reduction performance. C:
Dynamics of the adaptive σ: values of rt = ‖yt‖ plotted against its σt adapted to rt−1. The correlated values indicate that the shift
of the contrast response curve (controlled by σ) tracks the ambient contrast level.

FURTHER INFORMATION

Code and papers are available at
http://www.bethgelab.org

MATHEMATICS
Redundancy ∼ Multi-Information

I[Y] = DKL

(
ρ(y)‖

n∏
i=1

ρi(yi)

)
=

n∑
i=1

H[Yi]−H[Y].

Multi-Information Estimation

A[ρ̂(y)] : = −〈log ρ̂(y)〉Y∼ρ(y)

= H[Y] +DKL (ρ(y)‖ρ̂(y))

Î[Y] =
n∑
i=1

Ĥ[Yi]− A[ρ̂(y)]

I[Z] =

n∑
i=1

H[Zi]−H[Y]−
〈

log det

∣∣∣∣ dzdy
∣∣∣∣〉

Y

Naka-Rushton Distribution

r ∼ ν (r|κ, σ, s)⇒
κr

√
σ2 + r2

= ζ ∼ χ⊥κ(ζ|s)

ν (r|κ, σ, s) =

2κnσ2rn−1 exp

(
− κ2r2

2s(σ2+r2)

)
G
(
n
2 ,

κ2
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)
Γ
(
n
2

)
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