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How much can Orientation Selectivity and Contrast
Gain Control Reduce Redundancies in Natural

Images.

Fabian Sinz and Matthias Bethge

Abstract. The two most prominent features of early visual processing are orientation selective filtering and
contrast gain control. While the effect of orientation selectivity can be assessed within in a linear model, contrast
gain control is an inherently nonlinear computation. Here we employ the class of Lp elliptically contoured dis-
tributions to investigate the extent to which the two features, orientation selectivity and contrast gain control, are
suited to model the statistics of natural images. Within this model we find that contrast gain control can play a
significant role for the removal of redundancies in natural images. Orientation selectivity, in contrast, has only a
very limited potential for linear redundancy reduction.

1 Introduction

Both orientation selectivity and contrast gain control have been suggested to serve the reduction of redundancy
in neural responses to natural images. In order to quantitatively verify how much such mechanisms can actually
reduce the redundancy in natural images it is necessary to investigate their effects in terms of a statistical model.

The feature of orientation selectivity can be related to a linear filter bank model for which the different filter
shapes are chosen to optimally reduce the dependencies among different filter outputs. In fact, orientation selec-
tivity is a highly robust feature of such optimal filter shapes, reproducibly found if linear independent component
analysis (ICA) is applied to ensembles of natural image patches [13; 2].

The effect underlying the redundancy reduction achieved with orientation selective filtering is based on an
increase in peakedness of the histograms over the filter responses. In other words, orientation selective signal
decompositions can increase the “sparsity” with which the filter respond without discounting any information.

The linear filtering framework used in ICA, however, is not powerful enough to achieve a representation with
truly independent components. In particular, it has been shown that co-variations in the variance of different filters
is an ubiquitous finding [14]. In addition, it has been shown qualitatively that a contrast gain mechanism can be
used to remove these variance dependencies to a large extent [14].

In this study we would like to investigate the two mechanisms of orientation selective filtering and contrast
gain control in a common framework. In particular, we would like to determine quantitatively, how much each
mechanisms can be useful for redundancy reduction when they interact conjointly.

In previous studies [3; 6] we have shown that the effect of orientation selectivity alone has only a very limited
potential for redundancy reduction as the advantage of the optimal ICA solution turned out to be less than 4%
relative to a entirely random decorrelation transformation in the case of color as well as gray level images. More-
over, we have demonstrated that after whitening, a simple spherical symmetric distribution with a radial Gamma
distribution with solely two parameters fits the ensemble of natural image patches significantly better than the
factorial ICA model with 1

2n(n − 1) parameters (n being the number of dimensions). Since the marginals of this
spherically symmetric distribution are not independent, this finding is a striking evidence against the independence
assumption on the linear filter responses imposed by ICA. Another interesting conclusion can be drawn from the
fact that spherical distributions are invariant against orthogonal transformations. In the framework of any spheri-
cally symmetric distribution, in particular the one used by [6], all bases are equivalent. Particulary, the basis found
with ICA is as good as any other random basis within the spherical symmetric model.

In order to use the spherical symmetric model for the purpose of redundancy reduction, a nonlinear transforma-
tion is required. In fact, for this model independent marginals can be achieved by using a contrast gain control
mechanism: If we denote the cumulative distribution function (cdf) of the radial distribution by F (r) then inde-
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pendent marginals can be achieved by the transformation

z =
G−1(F (r))

r
x

where r = ||x||2 and G is the cdf of the χ-distribution (i.e. the radial distribution of a spherical symmetric
Gaussian). The functionG−1(F (r))/r can be interpreted as a gain control mechanism. Since r = ||x||2 = ||Qx||2
is invariant against arbitrary rotations Q the choice of the basis is irrelevant. Consequently, there is no role for
orientation selectivity in this simple gain control model. By comparing its performance to the ICA model which
exploits orientation selectivity but no contrast gain control we can conclude that contrast gain control is much more
effective for redundancy reduction than orientation selectivity.

If we wanted to incorporate both, spherical symmetry and marginal independence in a distribution of whitened
natural images, the only distribution serving those two goals would be the Gaussian (see e.g. [11; 1]). Yet, it is a
well known observation that the marginal distributions of natural images in the whitened space look strikingly non
Gaussian as the coefficient histograms are much more peaked at zero (see Figure 2A). Therefore, when dropping
the requirement of rotational invariance, the ICA model may seem to be a good candidate for fitting the statistics
of natural images as it allows one to model a factorial distribution with arbitrarily shaped marginal distributions.
Indeed, the ICA model favors non-Gaussian marginals along its coordinate axes. However, it would not predict
the marginal distributions to be non Gaussian in any arbitrary direction. In particular, if we look at the marginal
distribution which is obtained by summing over all different ICA coefficients, one would expect to find an approxi-
mately Gaussian distribution whenever the conditions of the central limit theorem are fulfilled. This is not the case
for natural images (see Figure 1A). In addition, we can verify that the central limit theorem holds if we destroy the
statistical dependencies between the coefficients of the different components by random shuffling (see Figure 1B).
This clearly shows that the marginals of natural images in the ICA basis are not independent.

0 20 40 60 80 100
0

5

10

15
x 104

Figure 1: Lack of Independence between the ICA Marginals A. Histogram over the sum of coefficients in the ICA basis
and over a corresponing Gaussian. If the coefficients of the single ICA basis vectors were really independent, the histogram
should look similar to the one of a Gaussian random variable due to the central limit theorem. B. Central Limit theorem
for natural images. Histogram of the summed coefficients for natural images in the ICA basis, after the sample index of the
coefficients has been shuffled separately for each dimension. By this random permutation all statistical dependencies between
the coefficients are destroyed. Since the resulting histogram is almost indistinguishable from a Gaussian density function, we
can conclude that the missing Gaussianity for the sum over the ICA coefficients of natural images shown in the left image is
due to the lack of statistical independence.
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In summary, the empirical findings are:

(i) For natural images, the independence assumption of the ICA model is significantly violated as the distribution
over the sum over the ICA coefficients does not approximate a Normal distribution while it does if statistical
dependencies are destroyed via shuffling (see Figure 1). In other words, linear filtering is not powerful enough
to remove all redundancies in natural images.

(ii) A spherical symmetric distribution yields a better fit in the whitened space than the factorial ICA model [6]
(see Figure 2). Nevertheless, the convergence of ICA to orientation selective filters is a robust phenomenon
and the resulting marginal distribution exhibit an increased kurtosis in comparison to the marginals of any
arbitrary direction. Ideally, a model distribution should be able to take this kind of symmetry breaking into
account.

In this paper we study a model which allows one to determine the effect of both orientation selectivity and
contrast gain control: The class ofLp-spherically symmetric distributions (see section 2.3) includes as special cases
both the L2-spherical symmetric distribution considered above as well as the ICA model for which the marginals
are all fitted by the same distribution within the exponential power family. In addition, it also generalizes to the
case where both mechanisms are used conjointly for the removal of statistical dependencies.

To specify the model parameters, we first fit the whitened coefficients of natural images to the class of Lp-
spherical distributions. In this way we determine the optimal p-norm for a selection of different bases. Sub-
sequently, it is easy to determine the transformation which yields independent marginals for the specified Lp-
spherical distribution in the ideal case. In a similar vein to the special case discussed above when p = 2, we can
factorize any Lp-spherical distribution ρ(y) = ρu(y/rp)ρr(rp) into a uniform distribution over the Lp-sphere and
an arbitrary distribution over the p-norm rp = ||y||p = (

∑
|yk|p)1/p (see Appendix 5.1). In contrast to the case of

p = 2, the Lp-sphere is not rotationally invariant and we need to distinguish between different data distributions
that are obtained by y = V x with V V > = I being an orthogonal transform. We will see below that for any
p-spherical distribution there is a scaling transformation

z = h(rp) y

such that the resulting representation has independent components. This non-linear step in our cascade can be
interpreted as a generalization of the contrast gain control mechanism for the L2-spherical symmetric case. The
case p = 2 is distinct in being invariant under arbitrary orthogonal transformations. In contrast, for arbitrary
p 6= 2 we only have the weaker symmetry of permutational invariance among the coordinate axis. This symmetry
breaking for p 6= 2 opens the possibility for orientation selectivity to play a role for redundancy reduction in
combination with contrast gain control. We will use this combined model to evaluate the contribution of both
mechanisms quantitatively.

2 Model
In this section, we describe the model and introduce the necessary mathematical tools. Rigorous versions of the
formal statements in this section will be treated in the Appendix. For a rough overview, we start with natural image
data obtained by randomly sampling 7 × 7 patches from photographic color images. Thus, each data point is a
3× 49 = 147 dimensional vector whose components specify the pixel intensities of the corresponding patch.

Using a suitable linear transformation, it is possible to represent the image patches with “whitened” coefficients
which all have the same variance and zero pairwise correlations. In fact, many different whitening transformations
are possible. IfCpixel denotes the covariance matrix between the pixel intensities, thenC−1/2

pixel defines the symmetric
whitening transformation which stays as close as possible to the Pixel basis (in Frobenius norm) as possible. Here,
our analysis starts after this whitening has already taken place. That is, we are considering an ensemble of N
image patches described by vectors xk ∈ R147, k = 1, . . . , N each of which describing the coefficients of the
image patch with respect to the symmetric whitening basis.

The details of the whitening procedure are described in the Appendix 5.1. What should be mentioned again
though is that the three DC components defining the spatially constant components within the three different color
channels are modeled separately because of their extraordinary statistical properties. That is, we can decompose
each vector into a direct sum of two parts x = xDC ⊕ xAC with xDC ∈ R3 describing the DC components and
xAC ∈ R144 describing the spatially structured AC components.
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Figure 2: Marginal Histograms for Different Transforms A-B show show the log marginal histograms on whitened 7×7
image patches for randomly chosen basis elementes of transformations indicated at the top of each column. The dashed line
corresponds to a normal distribution. One can nicely see that the marginal distribution of the coefficients is considerably more
peaked and has heavier tails than a Normal distribution. C shows a scatter plot of the corresponding coefficients. D-E show
scatter plots where the single coefficients have been permutated among the examples or the data points have been randomly
rotated, respectively. If the coefficients where independent, C and D should look exactly the same. If the data was rotationally
symmetric, C and E should look the same. However, the difference between the scatter plots is more dramatic between the
former, suggesting to drop the independence assumption and to use a spherically symmetric distribution to model the data.
The red and the blue line depict one contour line of the best fitting Lp-spherically symmetric distribution with radial gamma
component or independent exponential power distributed marginals. Since the blue contour does not resemble the shape of the
distribution at all, it seems apprropriate to drop the linear independence constraint. By looking at the red contours one can see
that rotational symmetry is also not exatly fulfilled. However the deviation between the shapes of the distribution seems less
severe in that case. F shows a contour plots of the log joint histograms for the two dimensions used above.
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The fitting of the Lp-spherical distribution that we will describe in the following only concerns the 144-
dimensional subspace of AC components. In order to avoid too much clutter in the notation, we will write x
instead of xAC in the following while we will distinguish between x and xAC in the notation only if their is an
increased risk of confusion. As another convention, we use uppercase letters to denote several images patches
collected as column vectors in a matrix X = (x1, ...,xm).

Fitting the Lp-spherical distribution to the ensemble X can then be separated into two steps:

1. First, we can apply different orthogonal transforms y = V x. For instance, V can be chosen in order to
maximize the non-Gaussanity of the marginal distributions as it is the case for ICA. This is the part where
orientation selectivity enters the model by a specific choice of the transform. Since all whitening transforms
only differ by an orthogonal transform in whitened space each choice of basis determines one transform. We
describe all transforms used in this report in more detail in section 2.1.

2. Direction-sensitive rescaling z = h(||y||p) y where f : (0,∞) → (0,∞) is a positive, invertible and differ-
entiable function which is chosen such that the resulting variable z has independent marginals. This part of
the model corresponds to the contrast gain control mechanism. The details are described in section 2.3.

Summarizing the two steps in an single equation, the model can be written as

p(z) =
n∏
k=1

pk (h(||V y||p) · (V y)k) (1)

with pk being the density of the univariate marginal distributions.

2.1 Orientation Selectivity and Whitening

Since we have assumed thatE[x] = 0 andE[xx>] = I the covariance matrix of the transformed variable y = V x
also equals the identity matrix as E[yy>] = V V > = I if V is orthogonal. In the following we will introduce a
selection of four different choices for V .

SYM x by default contains the coefficients for the symmetric whitening basis. Therefore, we refer to the
choice where V = I is chosen to be the identity matrix as “symmetric whitening”. From a biological
perspective, this case is of particular interest as it resembles the filter properties of retinal Ganglion cells.

wPCA Let Cpixel = UDU> be the eigenvalue decomposition of Cpixel. By choosing VwPCA = U> we obtain the
coefficients for the basis which is aligned with the principal axis of the pixel intensities. As this basis is
usually determined via principal component analysis (PCA) we refer to this transform as whitening PCA.
From a technical perspective this case is particularly interesting as the PCA basis is optimal in terms of
coding efficiency [6; 16].

ICA In Independent Component Analysis (ICA), a transformation VICA is determined which maximizes the
non-Gaussanity of the marginal distributions. For natural image patches, ICA is known to yield ori-
entation selective filters in resemblance to V1 simple cells. While other orientation selective basis are
possible, the filters defined by VICA correspond to the optimal choice for the purpose of redundancy
reduction.

HAD Finally we consider the case VHAD = 1√
m
HVICA with H denoting an arbitrary Hadamard matrix.

Hadamard matrices are defined by the two properties Hij = ±1 and HH> = mI . Therefore, the
resulting marginal distributions will all correspond to a sum over the different ICA coefficients modulo
sign flips. In a certain sense, this case can be seen as the opposite extreme to the case of ICA. Instead of
running an independent search for the most Gaussian marginals we rather make use of the central limit
theorem here: If the independence assumption underlying ICA applies, we expect to find the most Gaus-
sian components by using the Hadamard transformation which mixes all ICA coefficients with equal
weight.

By comparing the effect of the different choices for V on the average log-likelihood, we can evaluate the poten-
tial role of orientation selectivity for redundancy reduction in a quantitative way.
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Figure 3: Contour Lines of p-Spheres The figure shows several unit p-spheres. The red contour lines depict p-spheres
with 0 < p < 2, the blue lines correspond to p-spheres with p > 2. The black line shows the standard Euclidean sphere.

2.2 Constrast-Gain Control
According to the classical contrast normalization model [8] the normalization of the filter responses is described
by

h(r) =
1

c+ r
.

where r denotes the sum over the squared responses of a subset of filters. So far, it has been shown only qual-
itatively that contrast gain control can remove variance correlations among pairs of filter responses [14]. In the
following we will show how contrast gain control can systematically be exploited for the purpose of redundancy
reduction.

Following [10] we use the Lp-spherically symmetric distribution [7] to model the distribution of coefficients
in the whitened space. In difference to [10], we show here how this distribution can be used for the design of a
contrast gain control mechanism and compare how much it can contribute to the reduction of redundancies relative
to orientation selectivity.

By definition (see [7] and Definition 5.6), an Lp-spherically symmetric distributed variable Y is a product Y =
U · R of a random variable U, which is uniformly distributed on the unit p-sphere and a non-negative random
variable R with an arbitrary distribution. Intuitively speaking, U specifies the direction, while R accounts for
the radius. This implies that one can change from one Lp-spherically symmetric distribution to another one with
identical p by appropriate transformation of the radial component R.

The unit p-sphere is defined as the set of points {y ∈ Rm : ||y||p = 1} for which the p-norm

||y||p ≡

(
n∑
i=1

|yi|p
) 1
p

equals one1. By construction, the contour lines of the Lp-spherically symmetric distribution are all rescaled ver-
sions of the unit p-sphere. For illustration, several examples of contour lines for different choices of p are depicted
in Figure 3.

The case p = 2 is the only case for which the distribution is completely isotropic (i.e. invariant under arbitrary
orthogonal transformations). For all other cases with p 6= 2 the rotational symmetry is broken and reduced to
a permutational symmetry. While classical contrast normalization models are based on the 2-norm, the symme-
try breaking with respect to rotations is a necessary requirement for orientation selectivity to have an effect on
redundancy reduction.

1 Note, that for p < 1 the p-norm is not a norm in the strict sense. However, this does not matter for our purposes and, as a
convention, we will further use the term for all p > 0.
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p-generalized Normal distributions

factorial distributions Lp-spherical distributions

L  -spherical
distributions

2

Normal distribution

Figure 4: Properties of the p-generalized Normal distribution
The Gaussian is the onlyL2-spherically symmetric distribution with independent marginals. Like the Gaussian all p-generalized
Normal distributions have independent marginals and the property of spherical symmetry is a special case of the Lp-spherical
symmetry in this class. We suspect that the p-generalized Normal distributions are the only distributions which combine these
two properties simultaneously but this still needs to be proven.

In order to make use of the Lp-spherical distribution for the purpose of contrast gain control, we will use
a Lp-generalized version of the Gaussian, called the p-generalized Normal distribution Np. We suspect, that
this distribution plays the same special role for Lp-spherically symmetric distributions as the Normal distribution
does for L2-spherically symmetric distributions, i.e. to be the only L2-spherically symmetric distribution with
independent marginals [1; 11].

At the moment, we are working on proving or refuting this hypothesis. For using contrast gain control as a
nonlinear redundancy reduction mechanism, it suffices to show that for each given p the p-generalized Normal
distribution is in fact a factorial Lp-spherically symmetric distribution.

Properties of the p-generalized Normal distribution

(P1) The p-generalized Normal distribution has independent marginals which all belong to the exponential power
family with identical shape parameter p.

(P2) The radial cumulative distribution function of the p-generalized Normal distribution over rp = ||y||p is given
by

FNp(rp) =
Γ
(
n
p ,

rpp
2σ2

)
Γ
(
n
p

)
where Γ

(
n
p , a
)

=
∫ a

0
y
n
p−1e−ydy denotes the incomplete Γ-function (see section 5.3.3)

(P3) Uniqueness conjecture (remains to be shown): For every p and given variance the p-generalized Normal
distribution is the only Lp-spherical distribution with independent marginals.

A schematic illustration of the properties of the p-generalized Normal distribution is depicted in Figure 4. The
properties (P1) and (P2), in particular, provide the fundamental basis for the Lp-spherical distribution to be usable
as a contrast gain control model for redundancy reduction: Given the cdf Fp(rp) over the ‘radial’ component
rp = ||y||p of an arbitrary Lp-spherically distribution we can use (P2) for the construction of a contrast gain
control function

h(rp) =
(F−1
Np ◦ Fp)(rp)

rp
(2)
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which thus transforms the distribution into a p-generalized Gaussian. Thus, by property (P1), the new random
variable z = h(rp)y has a factorial distribution with marginals belonging to the exponential power family.

2.3 Fitting Lp-spherically Symmetric Distributions to Natural Images
In principle, the radial component of an Lp-spherically symmetric distribution can be of arbitrary shape, and
because rp = ||y||p is a one-dimensional random variable, precise non-parametric density estimation is feasible.
For the sake of simplicity, however, we here consider two cases of parametric density models only, the Gamma
and the Log-normal distribution.

First, we shortly recap the foundations of Lp-spherically symmetric distributions. In [7] a multivariate random
variabe Y is defined to have an Lp-spherically symmetric distribution if Y can be written as a product Y = R · U
of two independent random variables U and R, where U is a multivariate random variable which is uniformly
distributed on the unit p-sphere and R is a non-negative univariate random variable R with arbitrary distribution
(see Definition 5.6). Subsequently, [7] show that this definition is equivalent to Y having a density of the form
g(||y||pp) (see Theorem 5.8). Furthermore, they show that if Y is p-spherically symmetric distributed, then the
random variables ||Y||p and Y

||Y||p are independent and Y
||Y||p is uniformly distributed on the unit p-sphere (see

Lemma 5.7).
This suggests two ways of constructing p-spherically symmetric distributions. The first is to simply choose a

radial distribution qr and define

p(y)dy =
qr(r)
Sn−1
p

dsdr,

where Sn−1
p is the surface area, and s is an isometric parametrization of the p-sphere in n dimensions. With this

construction, the distribution is defined in a polar parametrization that separates the radial from the directional
component. The density over y is obtained by reversing the coordinate transformation. Throughout this paper, we
use the parametrization of [7; 15] that transforms y ∈ Rn into

y 7→ (r,u)
with r = ||y||p
and ui =

yi
||y||p

for i = 1, ..., n− 1.

Note, that this parametrization is not isometric and only one-to-one on the half-p-sphere. Because of the former,
we get an additional correction factor due to the transformation of the differential. The latter does not harm us,
since the determinant of the Jacobian is the same on both half-p-spheres and since we ignore the specific direction
of y anyway. In this parametrization, the uniform distribution on the unit p-sphere is given by (see Theorem 5.4)

qu(u1, ..., un−1)du =
pn−1Γ

(
n
p

)
2n−1Γn

(
1
p

) (1−
n−1∑
i=1

|ui|p
) 1−p

p

du

and the radial distribution, corresponding to the density g(||y||pp), by

qr(r)dr =
rn−12nΓ( 1

p )n

pn−1Γ(np )
g(rp)dr

= Sn−1
p (r)g(rp)dr, r > 0,

where Sn−1
p (r) is the surface area of the p-sphere with radius r (see Lemma 5.5).

By choosing an arbitrary qr, multiplying it with qu and reversing the transformation, will yield a p-spherically
symmetric distribution on y. The distributions2 SCp[µ,Γ[s, u]] and SCp[µ, logN [µ, σ]] below are obtained in that
way.

2Analogous to elliptically contoured distributions, which are denoted by EC, we denote p-spherically symmetric or p-
spherically contoured distributions by SCp. Note, that SC2 corresponds to an elliptically contoured distribution in the original
pixel space.
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The other way of obtaining a p-spherically symmetric distribution is simply to specify a density of the form
g(||y||pp). In order to obtain the radial distribution, one has to transform y into (r,u) and integrate out u. The
p-generalized Normal, denoted by Np[µ, σ], below is an example of that approach.

We finish the part about p-spherically symmetric distributions by introducing the three p-spherically symmetric
distributions used in our experiments. More details can be found in section 5.3. In the following we assume that Y
has mean zero and, therefore, skip the mean µ.

• SCp[µ,Γ[s, u]] : We obtain the p-spherically symmetric distribution with Γ-distributed radial component,
short SCp[µ,Γ[s, u]] , by multiplying the uniform distribution on the unit p-sphere (see Theorem 5.4) with a
Γ distribution

qr(r) =
ru−1e−

r
s

suΓ(u)

with shape parameter u and scale parameter s.

In Euclidean coordinates the density is given by

p(y) =
pn−1Γ

(
n
p

)
2nsuΓ(u)Γn

(
1
p

) ||y||u−np e−
||y||p
s ,

The maximum likelihood estimations of its parameters u and s are

ŝ =
V̂[R]
Ê[R]

and û =
Ê2[R]
V̂[R]

,

where Ê[R] and V̂[R] denote the empirical mean and the empirical variance.

• SCp[µ, logN [µ, σ]] : If we choose the log normal distribution

qr(r) =
1

rσ
√

2π
e−

(log r−µ)2

2σ2

as radial distribution, we obtain

p(y) =
pn−1Γ

(
n
p

)
||y||npσ

√
2π2nΓn

(
1
p

)e− (log ||y||p−µ)2

2σ2 .

The maximum likelihood estimates of µ and σ are given by

µ̂ = log(Ê[R])− 1
2

log

(
1 +

ˆV[R]
Ê2[R]

)

σ̂ =

√√√√log

(
1 +

ˆV[R]
Ê2[R]

)
.

• Np[σ2]: The p-generalized Normal distribution is obtained by choosing Y to be a collection of n i.i.d. random
variables yi, each distributed according to the exponential power distribution

yi ∼ p(y) =
p

Γ
(

1
p

)
(2σ2)

1
p 2
e−
|y|p

2σ2

Y ∼ p(y) =
n∏
i=1

p(yi) =

 p

Γ
(

1
p

)
(2σ2)

1
p 2

n

e−

∑n

i=1
|yi|

p

2σ2
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Since p(y) has the form g(||x||pp), it is a proper p-spherically symmetric distribution. Note, that for the case of
p = 2, the p-generalized Normal distribution reduces to a multivariate isotropic Gaussian. In order to compute
the contrast gain control function, we need to compute the radial distribution qr of p(y). Transforming p
according to Lemma 5.3 and integrating out u yields the radial distribution

qr(r) =
p rn−1

Γ
(
n
p

)
(2σ2)

n
p

e−
rp

2σ2 .

The maximum likelihood estimate for σ, given the data {r1, ..., rm} = {||y1||p, ...,ym||p}, is

σ̂ =

√√√√ p

2mn

m∑
i=1

rpi .

For the transformation of the radial component, we also need the cumulative distribution function of qr. As
shown in section 5.3.3, it is given by

FNp(a) =
∫ a

0

prn−1

Γ
(
n
p

)
(2σ2)

n
p

e−
rp

2σ2 dr

=
Γ
(
n
p ,

ap

2σ2

)
Γ
(
n
p

) ,

where Γ
(
n
p , a
)

=
∫ a

0
y
n
p−1e−ydy is the incomplete Γ-function.

2.4 Evaluation Measures
In this work, we aim at quantifying the effect of orientation selectivity and constrast-gain control on the redundancy
reduction for natural images. Redundancies can be quantified by a comparison of coding costs. According to
Shannon’s channel coding theorem the entropy of a discrete random variable is an attainable lower bound on the
coding cost for error-free encoding [5]. For the construction of such a code, it is necessary to know the true
distribution of the random variable. If the assumed distribution P̂ (k) used for the construction of an optimal code
is different from the true distribution P (k), the coding cost is given by the log-loss

E[− log(P̂ (k))] = −
∑
k

P (k) log P̂ (k) = H[k] +DKL[P (k)||P̂ (k)] .

H[k] = −
∑
k P (k) logP (k) denotes the discrete entropy and DKL[P (k)||P̂ (k)] =

∑
k P (k) log(P (k)/P̂ (k))

the Kullback-Leibler divergence. The Kullback-Leibler divergence is always positive and quantifies the additional
coding cost caused by using a model distribution different from the true one.

For continuous random variables, the total amount of bits required for loss-less encoding is infinite. In order
to get a meaningful measure of redundancy, one can compare the coding costs after discretization in the limit of
small bin size. Accordingly, we have

DKL[p(y)||p̂(y)] =
∫
p(y) log

p(y)
p̂(y)

dy = lim
|∆y|→0

∑
p(y)∆y log

p(y)∆y
p̂(y)∆y

(3)

where p(y) denotes the density over y ∈ Rm and the right hand side constitutes a Riemann sum with ∆y being
the m-dimensional volume element.

Now we are in the position to quantitatively measure redundancies of continuous random variables based on the
Kullback-Leibler distance of a factorial model distribution p̂(y) =

∏m
j=1 pj(yj) from the true joint distribution.

The resulting measure is the multi-information which can be defined for any multivariate random variable

I[p(y)] = DKL[p(y)||
∏m
j=1pj(yj)] =

∫
p(y) log

p(y)∏m
j=1 pj(yj)

dy . (4)
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The goal of redundancy reduction is to map a random variable y to a new random variable z = f(y) such that
the multi-information is reduced as much as possible. In this study, in particular, we want to compare the redun-
dancy reduction achieved with different linear and also nonlinear mappings. To this purpose it is not necessary
to know the true joint distributions as long as we consider differences between the multi-informations of different
representations only. The following calculation shows that evaluating the redundancy reduction achieved with a
mapping z = f(y) is equivalent to evaluating the difference between the log-loss of two particular model distri-
butions. Let p(y) denote the density of the input and q(z) =

(
lim∆y→0

∆y
∆z

)
p
(
f−1(z)

)
the resulting density of

the output of f . Note, that ∆z, or dz in the limit, is a function of ∆y or dy, respectively. Consequently, it holds
q(z)∆z = p(y)∆y for ∆y→ 0 and we can write

∆I = DKL[q(z)||
∏m
j=1qj(zj)]−DKL[p(y)||

∏m
j=1pj(yj)]

= lim
|∆y|→0

∑
p(y)∆y

(
log

q(z)∆z∏m
j=1 qj(zj)∆z

− log
p(y)∆y∏m

j=1 pj(yj)∆y

)

= lim
|∆y|→0

∑
p(y)∆y log

(∏m
j=1 pj(yj)∆y∏m
j=1 qj(zj)∆z

· q(z)∆z
p(y)∆y

)

= lim
|∆y|→0

∑
p(y)∆y log

(∏m
j=1 pj(yj)∆y∏m
j=1 qj(zj)∆z

)

= lim
|∆y|→0

∑
p(y)∆y log

(∏m
j=1 pj(yj)∆y

p̂f (y)∆y

)

=
∫
p(y) log

∏m
j=1 pj(yj)
p̂f (y)

dy

= E[−p̂f (y)]− E[−
∏m
j=1pj(yj)]

where p̂f (y) =
(

lim∆y→0
∆z
∆y

)
q̂(f(y)) = f ′(y) q̂(f(y)) denotes the model density in the input space which

corresponds to the factorial model distribution q̂(z) =
∏m
j=1 qj(zj) in the output space. Thus, if we have a model

density which does not factorize with respect to y and we have a (possibly nonlinear) mapping z = f(y) such
that the transformed model density with respect to z becomes factorial, we can evaluate the redundancy reduction
achieved with the mapping f simply by estimating the difference in the average log-loss obtained for p̂f (y) and
for
∏m
j=1 pj(yj). In order to get a measure which is less dependent on the number of dimensions m we define the

average log-loss (ALL) to be

ALL =
1
m
E[− log p̂(y)] (5)

for any given model distribution p̂(y). In summary, we have here outlined a way to deal with the case of nonlin-
ear redundancy reduction mechanisms such as contrast gain control: Instead of estimating the multi-information
directly, it suffices to estimate the differences in the average log-loss between the different models.

3 Experiments and Results
3.1 Data-set
Here, we resort to the data-set used in a previous study [17; 12]. This color image data set contains images from the
Bristol Hyperspectral Images Database [4] which consists of multi-spectral recordings of natural scenes taken in
the surroundings of Bristol, UK and in the greenhouses of Bristol Botanical Gardens. Our analysis was performed
on a subset of eight images similar to the ones used in [12; 6]. The authors of this study kindly provided to
us a pre-processed version of the image data where spectral radiance vectors were converted into LMS-values.
During subsequent processing the reflectance standard was cut out and images were converted to log-intensities
(see . [12]).

All images come at a resolution of 256×256 pixels. From each image circa 5000 patches of size 7×7 pixels were
drawn at random locations for training (circa 40000 patches in total) as well as circa 6250 patches per image for
testing (circa 50000 patches in total). In total, we sampled ten pairs of training and test sets in that way. All results
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below are averaged over ten trials of the experiments on those pairs. All experiments were carried out on gray
level and color images for exactly the same sets of images patches. In both cases, we used the log pixel intensities.
For chromatic images with three color channels (LMS) each patch is reshaped as a 7× 7× 3 = 147-dimensional
vector. The conversion to gray level images was done by simply averaging the channels I = log( 1

3 (L+M + S)).
In this case the dimensionality of a data vectors reduced to 49 dimensions. Further details of preprocessing have
been mentioned above in section 2.1 and can also be found in Appendix 5.1.

3.2 Experiments
We fitted the distributions SCp[µ,Γ[s, u]] , SCp[µ, logN [µ, σ]] and Np[µ, σ] for various values to the coefficients
of chromatic and achromatic natural image patches in the bases HAD, SYM, wPCA and ICA for several values of
p. For each model, we computed the maximum likelihood estimate of the model parameters and the value for p
with the best average log-loss on a training set. Afterwards, we computed the average log-loss on an independent
test set. This procedure was repeated for ten independently sampled splits of training and test set. All results
are averaged over those ten splits. The transforms for HAD, SYM and wPCA were obtained as described in
section 2.1. For ICA, we performed a gradient descent over the orthogonal group where we used the result of the
FastICA algorithm by [9] as initial starting point. All transforms were computed separately for each of the training
sets.

In order to compare the redundancy reduction of the different transforms with respect to the pixel basis (PIX),
we computed a non-parametric estimate of the marginal entropies of the patches in that representation with DC
component still contained [3]. Since the estimation is not bound to a particular parametric model, we used the
mean of the marginal entropies as an estimate of the average log-loss in the pixel representation.

3.3 Results
Figure 6 shows the average log-loss for the transforms HAD, SYM, wPCA and ICA, and the facto-
rial Np[µ, σ] model (dashed lines) as well as the non-factorial SCp[µ,Γ[s, u]] model. The curves for the
SCp[µ, logN [µ, σ]] model are almost exactly the same as the ones for the SCp[µ,Γ[s, u]] model and we there-
fore omit them.

The standard deviation about the ten trials is indicated via the linewidth of the curves in Figure 6. One striking
finding is the superiority of the non-factorial model over the factorial one in terms of the ALL score. This shows
again, that the linear independence assumption is not a good choice for a model of natural images. Note, that at
p = 2 the curves of the non-factorial model intersect for all different basis transforms, since for p = 2 the model
is invariant under orthogonal transformations.

In order to assess the relative contributions of whitening, orientation selectivity, and contrast gain control to
redundancy reduction, we consider the difference in the ALL scores (see section 2.4) of whitening in the Hadamard
basis (WHI), plain orientation selectivity (OS), plain contrast gain control (CG), retinal contrast gain control (CGret)
and the joint model (OC) relative to the average marginal entropy of the pixel basis (PIX). The latter is estimated
with the nonparametric entropy estimator NPL described in [3].

Absolute Difference [Bits/Comp.] Relative Difference [%]

Color Gray Color Gray

WHI - PIX −4.2171± 0.0041 −3.2470± 0.0041 WHI-PIX
OC-PIX 92.1971± 0.0578 91.0850± 0.0808

OS - PIX −4.2171± 0.0041 −3.3359± 0.0038 OS-PIX
OC-PIX 95.7591± 0.0462 93.5792± 0.0773

CG - PIX −4.4959± 0.0057 −3.5373± 0.0060 CG-PIX
OC-PIX 98.2921± 0.0109 99.2277± 0.0092

CGret - PIX −4.5267± 0.0057 −3.5466± 0.0059
CGret−PIX

OC-PIX 98.9654± 0.0112 99.4875± 0.0087

Table 1: Comparision of the Redundancy Reduction for Orientation Selectivity, Contrast Gain Control and the Com-
bined Model The table shows the absolute and relative differences in redundancy reduction achieved by whitening in the
Hadamard basis (WHI), contrast gain control (CG), retinal contrast gain control (CGret) which uses the SYM basis, orientation
selevtivity (OS) and the full model (OC) which combines both orientation selectivity and contrast gain control. The full model
adds a little less than 10% on top of Hadamard whitening. When comparing the contributions of each single model, orientation
selectivity always contributes less than contrast gain control. The maximal contribution of orientation selectivity to the full
model is less than 1% for gray images and less than 2% for color images. If we compare the full model to the retinal contrast
gain control model, the contribution of orientation selectivity is further reduced to 1% for color and 0.5% for gray images. The
absolute differences in the average log-loss are specified in bits per component.
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For plain whitening, we use the average log-loss for the factorial Np[µ, σ] model in the HAD basis with the
optimal value for p. This can be seen as an upper bound for the average log-loss of an arbitrary whitening transform,
since we expect the HAD basis to produce coefficients which are as Gaussian as possible (as argued in Section 1).
Clearly, an even more conservative upper bound would be the average log-loss in the Gaussian case, i.e. the
Np[µ, σ] model for p = 2 which is invariant under orthogonal transformations. However, since the joint distribution
of the coefficients look significantly non-Gaussian, even for the HAD case, it is more appropriate to use the basis
which is expected to produce normal distributed coefficients, if they were independent (see also Figure 1). The fact
that the ALL curve for the HAD transformation under the non-factorial SCp[µ,Γ[s, u]] model has its minimum at
p = 2 shows that this is as reasonable choice.

For modelling the contribution of plain orientation selectivity, we use the optimal ALL value of the ICA basis
under the factorialNp[µ, σ] model, since the ICA filters exhibit the characteristics of orientation selective receptive
fields and theNp[µ, σ] model assumes the marginals to be independent already without the nonlinear contrast gain
control transformation.

Figure 5: Comparision of the Redundancy Reduction for Orientation Selectivity, Contrast Gain Control and the Com-
bined Model The figure shows the absolute and relative differences in redundancy reduction achieved by contrast gain
control, orientation selevtivity and the combined model. The combined model only contributes less than 10% compared to
the pixel basis PIX. When comparing the contributions of each single model on top of plain whitening, orientation selectivity
always contributes less than contrast gain control, although the differences are smaller for chromatic images.

For the situation of plain contrast gain control, we take the average log-loss of the spherical
SCp[µ,Γ[s, u]] model, i.e. p = 2, with an arbitrary basis. This corresponds to the traditional constrast-gain
control model, where the image is scaled with a function of the Euclidean norm and, therefore, does not dependent
on the particular choice of the orthogonal transform V in whitened space. As mentioned before, it also corresponds
to the optimal p in case when using the Hadamard basis.

In a similar way as we use the ICA basis to model orientation selectivity as found for V1 simple cells, we can also
use the SYM basis to model the center-surround receptive fields observed for retinal ganglion cells. Since retinal
ganglion cells are known to exhibit contrast gain control too, it makes sense to compare the SCp[µ,Γ[s, u]] model
with the optimal value of p for the SYM basis to the SCp[µ,Γ[s, u]] model with the optimal value of p for the ICA
basis. In this way we get an idea how much the orientation selectivity adds on top of the contrast gain control in
the retina. The interpretation of these models as redundancy reduction mechanisms is justified as the distributions
can be transformed into one with independent marginals by applying the deterministic scaling transformation
h(rp) = (F−1

Np ◦ Fp)(rp)/rp.
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Figure 6: Average Log-Loss (ALL) as a Function of p Both figures show the average log-loss in bits per component
on an independent test for the factorial (dashed lines) and non-factorial models (solid lines) fit to the coefficients in the bases
HAD, SYM, wPCA and ICA. We show the curves of the SCp[µ,Γ[s, u]] model for the non-factorial case. When using the
SCp[µ, logN [µ, σ]] the curves look almost exactly the same. The shaded hull around the curves depicts the standard deviation
of the test error. The vertical lines denote the position of minimal average log-loss on the training set. The horizontal lines
indicate the values chosen for arbitrary whitening (WHI), pure orientation selectivity (OS), contrast gain control (CG) and the
combined model (OC).
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A B

Figure 7: Radial Scaling Function The figure shows the radial scaling function h(rp) = (F−1
Np ◦Fp)(rp)/rp for achromatic

images (A) and chromatic images (B). As in the traditional contrast gain control model, we find that the function follows a power
law of the form h(r) = c

rκ
. Fixing the output variance of theNp[µ, σ] model to one, we find that all κ range between 0.79 and

0.84 for achromatic images, and 0.86 and 0.91 for color images, respectively.

Figure 5 and Table 1 show the redundancy reduction achieved by orientation selectivity (OS), contrast gain con-
trol (CG), retinal contrast gain control (CGret) and the joint model (OC) compared to the reference points PIX and
WHI. As already reported in [6; 3], plain orientation selectivity adds only very little to the redundancy reduction
achieved by decorrelation and is even less effective than plain contrast gain control. If both orientation selectivity
and contrast gain control are combined it is possible to achieve a little less than 10% extra to the redundancy re-
duction with plain whitening only. When comparing the effect of plain contrast gain control and plain orientation
selectivity we find that orientation selectivity always contributes less to the overall redundancy reduction. In fact,
when looking at the additional gain for using the joint model instead of plain contrast gain control, we find that the
percental difference is only 0.7723% for gray level and 1.7088% for color images, respectively. This means that
less than two percent of the redundancy reduction can be attributed to orientation selectivity.

We also examined the contrast gain function h transforming the radial component of the SCp[µ,Γ[s, u]] model
into the radial component of theNp[µ, σ] (see Figure 7). When comparing those functions for the different choices
of bases in whitened space, we find that they exhibit a power law shape similar to the function assumed in the
traditional model , i.e. h(r) = c

rκ with κ = 1. Here we derive that, for an optimal contrast gain control mechanism,
κ should be chosen slightly less than one. The optimal κ parameter ranges between 0.79 and 0.84 for achromatic
images, and 0.86 and 0.91 for color images, respectively. When choosing the scale parameter of theNp[µ, σ] model
such that the output becomes white (under the assumption that the SCp[µ,Γ[s, u]] model perfectly fits the data),
all curves fall on top of each other.

4 Summary

In this report, we studied the conjoint effect of contrast gain control and orientation selectivity on the redundancy
reduction for natural images. In particular, we showed how the Lp-spherically distribution can be used to tune
the nonlinearity of contrast gain control to remove higher-order redundancies in natural images. Similar to the
classical model the gain control function turns out to follow a power law. In difference to the classical model, we
find that the absolute value of the exponent is slightly smaller than one and the optimal p-norm is slightly smaller
than two. In addition, we find that the relevance of orientation selectivity is further reduced in the conjoint model
for orientation selectivity and contrast gain control. In the linear framework (possibly endowed with a point-wise
nonlinearity for each neuron) the contribution of orientation selectivity to redundancy reduction has been shown to
be smaller than 5% relative to whitening (i.e. bandpass filtering) alone [3; 6]. Here, we found that the contribution
of orientation selectivity is even smaller than two percent relative to decorrelation plus gain control. We conclude
that orientation selectivity may show a more pronounced advantage for other objectives than redundancy reduction.
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5 Appendix

5.1 Preprocessing

In the first step, a projector PremDC is computed such that the first (for each channel) component of PremDCx
corresponds to the DC component(s) of that patch. This intermediate step is performed because the distribution
of a DC-component differs strongly from the distribution of the remaining channels. Additionally this separation
allows us to distinguish between the contributions of both parts to the total entropy. Any further decorrelation
transforms will be performed in the remaining subspace orthogonal to the DC-components. The transpose of the
matrix

P =


1 0 0 · · ·
1 1 0 · · ·
1 0 1 · · ·
...

. . .


has exactly the required property. However, it is not an orthogonal transformation. Therefore, we decompose P
into P = QR where R is upper triangular and Q is an orthogonal transform. Since P = QR, the first column of Q
must be a multiple of the vector with all coefficients equal to one (due to the upper triangluarity of R). Therefore,
the first component of Q>x is a multiple of the DC component. Since Q is an orthonomal transform, using all but
the first row of Q> for PremDC projects out the DC component. In case of color images the same trick is applied to
each channel by making PremDC a block-diagonal matrix with Q> as diagonal elements.

Secondly, the data was scaled such that the whitening transform has determinant one, i.e. that the determinant of
the globally scaled data is one. This is done by setting η =

∏
λ

1
2n
i , where λi are the eigenvalues of the covariance

matrix of the training data and n is their dimension. Therefore, the determinant of the covariance matrix of the
data after scaling with 1

η is
1
η2n

∏
λi =

∏
λi(∏

λ
1
2n
i

)2n = 1.

Since the whitening transform consist of D−
1
2U> with UDU> = C (C is the determinant of the scaled data), the

whitening must have determinant one due to

1 = det(C) = det(UDU>) = det(D−
1
2U>)2

Note, that the same scaling factor is used for the training and test set.

5.2 Definitions, Lemmas and Theorems

In this part, we provide the rigorous definitions, lemmas and theorems used in the text above. Most results and
proofs are not new and have been collected from papers and books. Nevertheless, in many cases we adapted
the original statements to our need and provided more detailed versions of the proofs. The original sources are
mentioned at the respective lemmas and theorems.

Definition 5.1. p-Norm Let y ∈ Rn be an arbitrary vector. We define

||y||p =

(
n∑
i=1

|yi|p
) 1
p

, p > 0

as the p-norm of y. Note, that only for p > 1, ||y||p is a strict norm. However, we will also use the term “p-norm”
even if only 0 < p.

Definition 5.2. p-Sphere
The unit p-sphere Sn−1

p in n dimensions is the set of points that fulfill

Sn−1
p := {y ∈ Rn| ||y||p = 1, p > 0}.

Lemma 5.3. Transformation in Radial and Spherical Coordinates [15]
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Let y = (y1, ...yn)> n ≥ 2 be a vector in Rn\{0}. Consider the transformation

y 7→ (r, u1, ..., un−1) =
(
||y||p,

y1

||y||p
, ...,

yn
||y||p

)
.

The absolute value of the determinants of the transformation on the upper and lower halfspaces

Rn+ := {y ∈ Rn| yn ≥ 0}
Rn− := {y ∈ Rn| yn < 0}

are equal and are given by

|detJ | = rn−1

(
1−

n−1∑
i=1

|ui|p
) 1−p

p

.

Proof. The proof is a more detailed version of the proof found in [15].
Let

∆i :=
{

1, ui ≥ 0
−1, ui < 0.

Then we can write |ui| = ∆iui. The above transformation is bijective on each of the regions Rn+ and Rn−. Let
σ = sign(yn), then the inverse is given by

yi = uir , 1 ≤ i ≤ n− 1

yn = σr

(
1−

n−1∑
i=1

|ui|p
) 1
p

= σr

(
1−

n−1∑
i=1

(∆iui)p
) 1
p

.

Note, that the σ = sign(yn) determines the halfspace in which the transformation is inverted.
First, we determine the Jacobian J . We start with computing the derivatives

∂yi
∂uj

= δijr, 1 ≤ i, j ≤ n− 1

∂yn
∂uj

= −σr

(
1−

n−1∑
i=1

|ui|p
) 1−p

p

∆p
i ui

p−1, 1 ≤ j ≤ n− 1

∂yi
∂r

= ui, 1 ≤ i ≤ n− 1

∂yn
∂r

= σ

(
1−

n−1∑
i=1

(∆iui)p
) 1
p

.

Therefore, the Jacobian, is given by

J =


∂y1
∂u1

∂y1
∂un−1

∂y1
∂r

...
. . .

...
...

. . .
...

∂yn
∂u1

∂yn
∂un−1

∂yn
∂r



=


r 0 . . . u1

0 r u2

...
. . .

...

−σr
(

1−
∑n−1
i=1 |ui|p

) 1−p
p

∆p
1u
p−1
1 . . . . . . σ

(
1−

∑n−1
i=1 (∆iui)p

) 1
p

 .
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Before actually computing the absolute value of the determinant |detJ |, we can factor out r from the first
n − 1 columns. Furthermore, we can factor out σ from the last row. Since we take the absolute value of detJ
and σ = {−1, 1}, we can remove it completely afterwards. Now we can use Laplace’s formula to expand the
determinant along the last column. With this, we get

1
rn−1

|detJ | =
n−1∑
k=1

(−1)n+k · uk · (−1)n−1+k · −∆p
ku

p−1
k ·

(
1−

n−1∑
i=1

|ui|p
) 1−p

p

+(−1)2n

(
1−

n−1∑
i=1

|ui|p
) 1
p

=
n−1∑
k=1

|uk|p
(

1−
n−1∑
i=1

|ui|p
) 1−p

p

+

(
1−

n−1∑
i=1

|ui|p
) 1
p

=

(
1−

n−1∑
i=1

|ui|p
) 1−p

p
(
n−1∑
k=1

|uk|p + 1−
n−1∑
k=1

|uk|p
)

=

(
1−

n−1∑
i=1

|ui|p
) 1−p

p

.

Resolving the result for |detJ | completes the proof.

Theorem 5.4. p-Spherical Uniform Distribution [15]
Let Y = (y1, ..., yn)> be a random vector. Let the yi be i.i.d. distributed with p.d.f.

f(y) =
p1− 1

p

2Γ
(

1
p

)e− |y|pp , y ∈ R.

Let ui = yi
||Y||p for i = 1, ..., n. Then

∑n
i=1 |ui|p = 1 and the joint p.d.f of u1, ...,un−1 is

qu(u1, ..., un−1) =
pn−1Γ

(
n
p

)
2n−1Γn

(
1
p

) (1−
n−1∑
i=1

|ui|p
) 1−p

p

with −1 < ui < 1, i = 1, ..., n− 1 and
∑n−1
i=1 |ui|p < 1.

Proof. The joint p.d.f. of Y is given by

f(y) =
pn−

n
p

2nΓn
(

1
p

)e− 1
p

∑n

i=1
|yi|p

with yi ∈ R and i = 1, ..., n. Applying the transformation

(y1, ..., yn) = (r, u1, ..., un−1)

from Lemma 5.3 and taking into account that each (u1, ..., un−1) corresponds to (y1, ..., yn) and (y1, ...,−yn) we
obtain

q(u1, ..., un−1, r) = 2 · pn−
n
p

2nΓn
(

1
p

)rn−1e−
rp

p

(
1−

n−1∑
i=1

|ui|p
) 1−p

p

.

By integrating out r, we obtain qu(u1, ..., un):

∫ ∞
0

q(u1, ..., un−1, r)dr =
pn−

n
p

2n−1Γn
(

1
p

) (1−
n−1∑
i=1

|ui|p
) 1−p

p ∫ ∞
0

rn−1e−
rp

p dr.
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In order to compute the integral, we use the substitution z = rp

p or r = (zp)
1
p . This yields dr = (zp)

1
p−1dz and,

therefore, ∫ ∞
0

rn−1e−
rp

p dr =
∫ ∞

0

(zp)
n−1
p e−z(zp)

1−p
p dz

= p
n−p
p

∫ ∞
0

z
n
p−1e−zdz

= p
n−p
p Γ

(
n

p

)
.

Hence,

qu(u1, ..., un−1) =
∫ ∞

0

q(u1, ..., un−1, r)dr

=
pn−

n
p

2n−1Γn
(

1
p

) (1−
n−1∑
i=1

|ui|p
) 1−p

p

p
n−p
p Γ

(
n

p

)

=
pn−1Γ

(
n
p

)
2n−1Γn

(
1
p

) (1−
n−1∑
i=1

|ui|p
) 1−p

p

.

In order to see, why qu is called uniform on Sn−1
p , we must recognize, that qu of

(
1−

∑n−1
i=1 |ui|p

) 1−p
p

which

is due to the coordinate transformation and
pn−1Γ(np )
2n−1Γn( 1

p ) which corresponds to twice the surace area of the p-sphere

(see Lemma 5.5). Since each u corresponds to two y before the coordinate transform (one on the upper and one

on the lower halfsphere), the density of u in y-coordinates corresponds to 1
Sn−1
p

where Sn−1
p =

2nΓ( 1
p )n

pn−1Γ(np ) is the
surface area of the unit p-sphere.

As we will see in Lemma 5.7, Y
||Y||p is independent of ||Y||p and, therefore, the specific form of the density f

does not matter as long as it is p-spherically symmetric.

Lemma 5.5. Volume and Surface of the p-Sphere
The volume V n−1

p (r) of the p-Sphere with radius r is given by

V n−1
p (r) =

rn2nΓ( 1
p )n

npn−1Γ(np )
.

The surface Sn−1
p (r) is given by

Sn−1
p (r) =

d

dr
V n−1
p (r)

=
rn−12nΓ( 1

p )n

pn−1Γ(np )
.

As a convention, we leave out the argument of V n−1
p (r) and Sn−1

p (r) when denoting the volume or the surface
of the unit p-sphere, i.e.

V n−1
p := V n−1

p (1)

Sn−1
p := Sn−1

p (1).
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Proof. In order to compute the volume of the p-sphere in n-dimension, we must solve the integral
∫

Sn−1
p

du. Using
the volume element transformation from lemma 5.3, we can transform the integral into

∫
Sn−1
p

du = 2
∫ r

0

∫
rn−1

(
1−

n−1∑
i=1

|ui|p
) 1−p

p

dr du

= 2
∫ r

0

rn−1dr ·
∫ (

1−
n−1∑
i=1

|ui|p
) 1−p

p

du

=
1
n
rn · 2

∫ (
1−

n−1∑
i=1

|ui|p
) 1−p

p

du.

In theorem 5.4 we prove that q(u1, ..., un−1) =
pn−1Γ(np )
2n−1Γn( 1

p )

(
1−

∑n−1
i=1 |ui|p

) 1−p
p

is a probability density. In

particular, this means that

∫
q(u1, ..., un−1)du =

pn−1Γ
(
n
p

)
2n−1Γn

(
1
p

) ∫ (1−
n−1∑
i=1

|ui|p
) 1−p

p

du

= 1

which is equivalent to

∫ (
1−

n−1∑
i=1

|ui|p
) 1−p

p

du =
2n−1Γn

(
1
p

)
pn−1Γ

(
n
p

) .
Therefore,

V n−1
p (r) =

∫
Sn−1
p

du

=
2
n
rn ·

∫ (
1−

n−1∑
i=1

|ui|p
) 1−p

p

du

=
rn2nΓn

(
1
p

)
npn−1Γ

(
n
p

)
Differentiation of V n−1

p (r) with respect to r yields the result for the surface area.

Definition 5.6. Lp-Spherically Symmetric Distribution [7] A random vector Y = (y1, ..., yn)> is said to have
a Lp-spherically symmetric distribution if Y can be written as a product of two independent random variables
Y = R · U, where R is a non-negative univariate random variable with density qr : R+ → R+ and U is uniformly
distributed on the unit p-sphere, i.e.

qu(u1, ..., un) =
pn−1Γ

(
n
p

)
2n−1Γn

(
1
p

) (1−
n−1∑
i=1

|ui|p
) 1−p

p

(see Theorem 5.4).

Lemma 5.7. Probability Density Functions [7]
Let Y = (y1, ..., yn)> be an n-dimensional random variable with P{Y = 0} = 0 and a density of the form

Y ∼ g(||y||pp). Then the following three statements hold:
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1. The random variables R = ||Y||p and U = Y
||Y||p are independent.

2. U = Y
||Y||p is uniformly distributed on the unit p-sphere Sn−1

p .

3. R = ||Y||p has a density qr, where qr relates to g via

qr(r) =
rn−12nΓ( 1

p )n

pn−1Γ(np )
g(rp)

= Sn−1
p (r)g(rp), r > 0.

Proof. The proof is a more detailed version of the proof found in [7].

1. First we transform the density of Y with the transformation of lemma 5.3 and obtain the new density in
spherical and radial coordinates

q(u1, ..., un−1, r) = 2

(
1−

n−1∑
i=1

|ui|p
) 1−p

p

g(rp)rn−1

−1 < ui < 1, 1 ≤ i ≤ n− 1,
n∑
i=1

|ui|p < 1.

Since q can be written as a product of a function of r and a function of u = (u1, ..., un−1), U and R are
independent. Thus, ||Y||p = R and U = Y

||Y||p are independent as well.

2. In order to get qu(u1, ..., un−1), we must integrate out r. However, we do not know the exact form of g. But
since q is a probability density, we know that∫ ∞

0

∫
q(u1, ..., un−1, r)dudr = 1.

Since Y and R are independent, we can write this integral as

∫ ∞
0

∫
q(u1, ..., un−1, r)dudr = 2

∫ (
1−

n−1∑
i=1

|ui|p
) 1−p

p

du ·
∫ ∞

0

g(rp)rn−1dr.

From that, we can immediately derive

∫ ∞
0

g(rp)rn−1dr =

2
∫ (

1−
n−1∑
i=1

|ui|p
) 1−p

p

du

−1

.

In order to solve
(

2
∫ (

1−
∑n−1
i=1 |ui|p

) 1−p
p

du
)−1

we can use theorem 5.4. In this theorem, we showed

that qu(u1, ..., un−1) =
pn−1Γ(np )
2n−1Γn( 1

p )

(
1−

∑n−1
i=1 |ui|p

) 1−p
p

is the uniform distribution on the p-unit sphere. In

particular, we know that
∫
q(u1, ..., un−1)du = 1 and, therefore,

∫ (
1−

∑n−1
i=1 |ui|p

) 1−p
p

du =
2n−1Γn

(
1
p

)
pn−1Γ

(
n
p

) .
21



Thus,

∫ ∞
0

g(rp)rn−1dr =

2
∫ (

1−
n−1∑
i=1

|ui|p
) 1−p

p

du

−1

=
pn−1Γ

(
n
p

)
2nΓn

(
1
p

)
and

qu(u1, ..., un−1) =
∫ ∞

0

q(u1, ..., un−1, r)dr

=

(
1−

n−1∑
i=1

|ui|p
) 1−p

p pn−1Γ
(
n
p

)
2n−1Γn

(
1
p

) .
This shows that Y is uniformly distributed on the unit p-sphere.

3. The density of R can be computed by integrating out u1, ..., un−1

qr(r) =
∫
q(u1, ..., un−1, r)du

=
2nΓn

(
1
p

)
pn−1Γ

(
n
p

)rn−1g(rp), r > 0

by the same argument as in 2. This completes the proof.

The next theorem tells us that Y is Lp-spherically symmetric distributed if and only if its density has the form
g(||y||pp).

Theorem 5.8. Form of Lp-Spherically Symmetric Distribution [7] Let Y = (y1, ..., yn)>be an n-dimensional
random variable with P{Y = 0} = 0. Then, the density of Y has the form g(||y||pp), where g : R+ → R+ is a
measurable function, if and only if Y = RU is spherically symmetric distributed, with independent R and U, where
R has the density

qr(r) =
2nΓn

(
1
p

)
pn−1Γ

(
n
p

)rn−1g(rp), r > 0.

Proof. Sufficiency: Assume Y = RU with independent R and U, where U is uniformly distributed on the p-sphere
and R has the density qr. Then the joint density is given by (see theorem 5.4):

q(r, u1, ..., un−1) = qr(r)
pn−1Γ

(
n
p

)
2n−1Γn

(
1
p

) (1−
n−1∑
i=1

|ui|p
) 1−p

p

−1 < ui < 1, 1 ≤ i ≤ n− 1,
n−1∑
i=1

|ui|p < 1, r > 0.

Now let yi = rui for 1 ≤ i ≤ n − 1 and |yn| = r
(

1−
∑n−1
i=1 |ui|p

) 1
p

. We can use 5.3 to see that the absolute
value of the determinant of the jacobian is given byrn−1

(
1−

n−1∑
i=1

|ui|p
) 1−p

p

−1

= r1−n

(
1−

n−1∑
i=1

|ui|p
) p−1

p

.
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Therefore,

p(y1, ..., yn) =
pn−1Γ

(
n
p

)
2n−1Γn

(
1
p

)qr(||y||p)||y||1−np

= g(||y||pp).

Necessity: Assume Y ∼ g(||Y||pp). According to lemma 5.7 Y
||Y||p and Y are independent and Y

||Y||p is uniformly
distributed on the p-sphere. Again in lemma 5.7 we showed that R has the density

qr(r) =
2nΓn

(
1
p

)
pn−1Γ

(
n
p

)rn−1g(rp), r > 0.

Therefore, Y is Lp-spherically symmetric distributed if and only if Y ∼ g(||Y||pp) for some density g.

5.3 Distributions
5.3.1 The p-spherically symmetric distribution with Γ-distributed radial component SCp[µ,Γ[s, u]]

We obtain the p-spherically symmetric distribution with Γ-distributed radial component, short SCp[µ,Γ[s, u]],
by multiplying the uniform distribution on the unit p-sphere (see Theorem 5.4) with a Γ distribution

qr(r) =
ru−1e−

r
s

suΓ(u)

with shape parameter u and scale parameter s:

q(r,u) =
pn−1Γ

(
n
p

)
2n−1suΓ(u)Γn

(
1
p

) (1−
n−1∑
i=1

|ui|p
) 1−p

p

ru−1e−
r
s .

Transforming q(r,u) back into Euclidean coordinates yields

p(y) =
pn−1Γ

(
n
p

)
2nsuΓ(u)Γn

(
1
p

) ||y||u−np e−
||y||p
s ,

where we have to remember that q(r,u) = 2p(y(u, r))rn−1
(

1−
∑n−1
i=1 |ui|p

) 1−p
p

dudr, since a given u =

(u1, ..., un−1)> can correspond to yn = ±r
(

1−
∑n−1
i=1 |ui|p

) 1
p

, i.e. the transformation (y1, ..., yn) 7→
(r, u1, ..., un−1) is only one-to-one on the half-p-sphere.

In order to estimate the parameters u and s from dataX = {y1, ...,ym}, we first compute the radial components
of all datapoints {r1, ..., rm} = {||y1||p, ..., ||ym||p}. Then, we use that

E[R] = su

V[R] = us2

and, therefore,

s =
V[R]
E[R]

u =
E2[R]
V[R]

.

Using the maximum likelihood estimatior for E[R] and V[R] yields the estimations for u and s

Ê[R] =
1
m

m∑
i=1

ri

V̂[R] = Ê[R2]− Ê2[R].
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5.3.2 The p-spherically symmetric distribution with log-normal distributed radial component
SCp[µ, logN [µ, σ]]

If we choose the log normal distribution qr(r) = 1
rσ
√

2π
e−

(log r−µ)2

2σ2 as radial distribution, we obtain

q(u1, ..., un−1, r) = qr(r)
pn−1Γ

(
n
p

)
2n−1Γn

(
1
p

) (1−
n−1∑
i=1

|ui|p
) 1−p

p

=
pn−1Γ

(
n
p

)
rσ
√

2π2n−1Γn
(

1
p

) (1−
n−1∑
i=1

|ui|p
) 1−p

p

e−
(log r−µ)2

2σ2 .

Transforming the density back to Cartesian coordinates yields

p(y) =
pn−1Γ

(
n
p

)
||y||npσ

√
2π2nΓn

(
1
p

)e− (log ||y||p−µ)2

2σ2 .

The maximum likelihood estimates of µ and σ are the usual estimates for the log-normal distribution and are
given by

µ = log(Ê[R])− 1
2

log

(
1 +

ˆV[R]
Ê2[R]

)

σ2 = log

(
1 +

ˆV[R]
Ê2[R]

)
.

5.3.3 The p-generalized Normal distribution Np[σ2]
The p-generalized Normal distribution is obtained by choosing Y to be a collection of n i.i.d. random variables

yi, each distributed according to the exponential power distribution

yi ∼ p(x) =
p

Γ
(

1
p

)
(2σ2)

1
p 2
e−
|x|p

2σ2

Y ∼ p(y) =
n∏
i=1

p(yi) =

 p

Γ
(

1
p

)
(2σ2)

1
p 2

n

e−

∑n

i=1
|yi|

p

2σ2

Since p(x) has the form g(||x||pp), it is a proper p-spherically symmetric distribution due to Theorem 5.8. Note, that
for the case of p = 2, the p-generalized Normal distribution reduces to a multivariate isotropic Gaussian. In order
to compute the contrast gain control function, we need to compute the radial distribution qr of p(x). Transforming
p according to Lemma 5.3 yields

q(r,u) =
pnrn−1

Γn
(

1
p

)
(2σ)

n
p 2n−1

e−
rp

2σ

(
1−

n−1∑
i=1

|ui|p
) 1−p

p

.

By integrating over u (see lemma 5.5 how to carry out the integral) we get

qr(r) =
p rn−1

Γ
(
n
p

)
(2σ2)

n
p

e−
rp

2σ2

In order to estimate the scale parameter σ from data X = {r1, ..., rm} = {||x1||p, ..., ||xm||p}, we carry out the
usual procedure for maximum likelihood estimation and obtain
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d

dσ
log qr(r) =

d

dσ

(
−2n
p

log(σ)− rp

2σ2

)
=

rpp− 2nσ2

pσ3

d

dσ

m∑
i=1

log qr(ri) =
m∑
i=1

rpi p− 2nσ2

pσ3

!= 0.

This yields

σ̂ =

√√√√ p

2mn

m∑
i=1

rpi .

For the transformation of the radial component, we will also need the cumulative distribution function of

qr(r) =
p rn−1

Γ
(
n
p

)
(2σ2)

n
p

e−
rp

2σ2 .

It can be computed via simple integration with the substitution y = rp

2σ2

FNp(a) =
∫ a

0

prn−1

Γ
(
n
p

)
(2σ2)

n
p

e−
rp

2σ2 dr

=
p

Γ
(
n
p

)
(2σ2)

n
p

∫ a

0

rn−1e−
rp

2σ2 dr

=
1

Γ
(
n
p

) ∫ ap

2σ2

0

y
n
p−1e−ydy

=
Γ
(
n
p ,

ap

2σ2

)
Γ
(
n
p

) ,

where Γ (z, b) =
∫ b

0
yz−1e−ydy is the incomplete Γ-function.
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