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Abstract

In this paper, we introduce a new family of probability densities calledLp-nested symmetric distri-
butions. The common property, shared by all members of the new class, is the same functional form
ρ(xxx) = ρ̃( f (xxx)), wheref is a nested cascade ofLp-norms‖xxx‖p = (∑ |xi |

p)1/p. Lp-nested symmetric
distributions thereby are a special case ofν-spherical distributions for whichf is only required to
be positively homogeneous of degree one. While both,ν-spherical andLp-nested symmetric dis-
tributions, contain many widely used families of probability models such as the Gaussian, spher-
ically and elliptically symmetric distributions,Lp-spherically symmetric distributions, and certain
types of independent component analysis (ICA) and independent subspace analysis (ISA) models,
ν-spherical distributions are usually computationally intractable. Here we demonstrate thatLp-
nested symmetric distributions are still computationallyfeasible by deriving an analytic expression
for its normalization constant, gradients for maximum likelihood estimation, analytic expressions
for certain types of marginals, as well as an exact and efficient sampling algorithm. We discuss
the tight links ofLp-nested symmetric distributions to well known machine learning methods such
as ICA, ISA and mixed norm regularizers, and introduce the nested radial factorization algorithm
(NRF), which is a form of non-linear ICA that transforms any linearly mixed, non-factorialLp-
nested symmetric source into statistically independent signals. As a corollary, we also introduce
the uniform distribution on theLp-nested unit sphere.

Keywords: parametric density model, symmetric distribution,ν-spherical distributions, non-linear
independent component analysis, independent subspace analysis, robust Bayesian inference, mixed
norm density model, uniform distributions on mixed norm spheres, nested radial factorization

1. Introduction

High-dimensional data analysis virtually always starts with the measurement offirst and second-
order moments that are sufficient to fit a multivariate Gaussian distribution, the maximum entropy
distribution under these constraints. Natural data, however, often exhibit significant deviations from
a Gaussian distribution. In order to model these higher-order correlations, it is necessary to have
more flexible distributions available. Therefore, it is an important challenge tofind generaliza-
tions of the Gaussian distribution which are more flexible but still computationally and analytically
tractable. In particular, density models with an explicit normalization constant are desirable be-
cause they make direct model comparison possible by comparing the likelihoodof held out test
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samples for different models. Additionally, such models often allow for a direct optimization of the
likelihood.

One way of imposing structure on probability distributions is to fix the general form of the
iso-density contour lines. This approach was taken by Fernandez et al.(1995). They modeled the
contour lines by the level sets of a positively homogeneous function of degree one, that is functions
ν that fulfill ν(a·xxx) = a·ν(xxx) for xxx∈Rn anda∈R+

0 . The resulting class ofν-spherical distributions
have the general formρ(xxx) = ρ̃(ν(xxx)) for an appropriatẽρ which causesρ(xxx) to integrate to one.
Since the only access ofρ to xxx is via ν one can show that, for a fixedν, those distributions are gen-
erated by a univariate radial distribution. In other words,ν-spherically distributed random variables
can be represented as a product of two independent random variables: one positive radial variable
and another variable which is uniform on the 1-level set ofν. This property makes this class of
distributions easy to fit to data since the maximum likelihood procedure can be carried out on the
univariate radial distribution instead of the joint density. Unfortunately, deriving the normalization
constant for the joint distribution in the general case is intractable becauseit depends on the surface
area of those level sets which can usually not be computed analytically.

Known tractable subclasses ofν-spherical distributions are the Gaussian, elliptically contoured,
andLp-spherical distributions. The Gaussian is a special case of elliptically contoured distributions.
After centering and whiteningxxx :=C−1/2(sss−E[sss]) a Gaussian distribution is spherically symmetric
and the squaredL2-norm ||xxx||22 = x2

1+ · · ·+ x2
n of the samples follow aχ2-distribution (that is, the

radial distribution is aχ-distribution). Elliptically contoured distributions other than the Gaussian
are obtained by using a radial distribution different from theχ-distribution (Kelker, 1970; Fang
et al., 1990).

The extension fromL2- to Lp-spherically symmetric distributions is based on replacing theL2-
norm by theLp-norm

ν(xxx) = ‖xxx‖p =

(
n

∑
i=1

|xi |
p

) 1
p

, p> 0

in the density definition. That is, the density ofLp-spherically symmetric distributions can always
be written in the formρ(xxx) = ρ̃(||xxx||p). Those distributions have been studied by Osiewalski and
Steel (1993) and Gupta and Song (1997). We will adopt the naming convention of Gupta and
Song (1997) and call‖xxx‖p an Lp-norm even though the triangle inequality only holds forp≥ 1.
Lp-spherically symmetric distributions withp 6= 2 are no longer invariant with respect to rotations
(transformations fromSO(n)). Instead, they are only invariant under permutations of the coordinate
axes. In some cases, it may not be too restrictive to assume permutation or even rotational symmetry
for the data. In other cases, such symmetry assumptions might not be justifiedand cause the model
to miss important regularities.

Here, we present a generalization of the class ofLp-spherically symmetric distributions within
the class ofν-spherical distributions that makes weaker assumptions about the symmetriesin the
data but still is analytically tractable. Instead of using a singleLp-norm to define the contour of the
density, we use a nested cascade ofLp-norms where anLp-norm is computed over groups ofLp-
norms over groups ofLp-norms ..., each of which having a possibly differentp. Due to this nested
structure we call this new class of distributionsLp-nested symmetric distributions. The nested com-
bination ofLp-norms preserves positive homogeneity but does not require permutationinvariance
anymore. WhileLp-nested symmetric distributions are still invariant under reflections of the coordi-
nate axes, permutation symmetry only holds within the subspaces of theLp-norms at the bottom of
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Lp-NESTEDSYMMETRIC DISTRIBUTIONS

the cascade. As demonstrated in Sinz et al. (2009b), one possible application domain ofLp-nested
symmetric distributions is natural image patches. In the current paper, we would like to present a
formal treatment of this class of distributions. Readers interested in the application of these distri-
butions to natural images should refer to Sinz et al. (2009b).

We demonstrate below that the construction of the nestedLp-norm cascade still bears enough
structure to compute the Jacobian of polar-like coordinates similar to those of Song and Gupta
(1997), and Gupta and Song (1997). With this Jacobian at hand it is possible to compute the uni-
variate radial distribution for an arbitraryLp-nested symmetric density and to define the uniform
distribution on theLp-nested unit sphereLν = {xxx ∈ R

n|ν(xxx) = 1}. Furthermore, we compute the
surface area of theLp-nested unit sphere and, therefore, the general normalization constant for
Lp-nested symmetric distributions. By deriving these general relations for theclass ofLp-nested
symmetric distributions we have determined a new class of tractableν-spherical distributions which
is so far the only one containing the Gaussian, elliptically contoured, andLp-spherical distributions
as special cases.

Lp-spherically symmetric distributions have been used in various contexts in statistics and ma-
chine learning. Many results carry over toLp-nested symmetric distributions which allow a wider
application range. Osiewalski and Steel (1993) showed that the posterior on the location of aLp-
spherically symmetric distributions together with an improper Jeffrey’s prior on the scale does not
depend on the particular type ofLp-spherically symmetric distribution used. Below, we show that
this results carries over toLp-nested symmetric distributions. This means that we can robustly
determine the location parameter by Bayesian inference for a very large class of distributions.

A large class of machine learning algorithms can be written as an optimization problem on the
sum of a regularizer and a loss function. For certain regularizers and loss functions, like the sparseL1

regularizer and the mean squared loss, the optimization problem can be seenas the maximum a pos-
teriori (MAP) estimate of a stochastic model in which the prior and the likelihood are the negative
exponentiated regularizer and loss terms. Sinceρ(xxx) ∝ exp(−||xxx||pp) is anLp-spherically symmet-
ric model, regularizers which can be written in terms of a norm have a tight link toLp-spherically
symmetric distributions. In an analogous way,Lp-nested symmetric distributions exhibit a tight link
to mixed-norm regularizers which have recently gained increasing interest in the machine learn-
ing community (see, e.g., Zhao et al., 2008; Yuan and Lin, 2006; Kowalski et al., 2008).Lp-nested
symmetric distributions can be used for a Bayesian treatment of mixed-norm regularized algorithms.
Furthermore, they can be used to understand the prior assumptions made bysuch regularizers. Be-
low we discuss an implicit dependence assumption between the regularized variables that follows
from the theory ofLp-nested symmetric distributions.

Finally, the only factorialLp-spherically symmetric distribution (Sinz et al., 2009a), thep-
generalized Normal distribution, has been used as an ICA model in which themarginals follow
an exponential power distribution. This class of ICA is particularly suited for natural signals like
images and sounds (Lee and Lewicki, 2000; Zhang et al., 2004; Lewicki,2002). Interestingly,Lp-
spherically symmetric distributions other than thep-generalized Normal give rise to a non-linear
ICA algorithm called radial Gaussianization forp= 2 (Lyu and Simoncelli, 2009) or radial factor-
ization for arbitraryp (Sinz and Bethge, 2009). As discussed below,Lp-nested symmetric distribu-
tions are a natural extension of the linearLp-spherically symmetric ICA algorithm to ISA, and give
rise to a more general non-linear ICA algorithm in the spirit of radial factorization.

The remaining part of the paper is structured as follows: in Section 2 we define polar-like coordi-
nates forLp-nested symmetrically distributed random variables and present an analytical expression
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for the determinant of the Jacobian for this coordinate transformation. Using this expression, we
define the uniform distribution on theLp-nested unit sphere and the class ofLp-nested symmetric
distributions for an arbitraryLp-nested function in Section 3. In Section 4 we derive an analytical
form of Lp-nested symmetric distributions when marginalizing out lower levels of theLp-nested
cascade and demonstrate that marginals ofLp-nested symmetric distributions are not necessarily
Lp-nested symmetric. Additionally, we demonstrate that the only factorialLp-nested symmetric
distribution is necessarilyLp-spherically symmetric and discuss the implications of this result for
mixed norm regularizers. In Section 5 we propose an algorithm for fitting arbitrary Lp-nested sym-
metric models. We derive a sampling scheme for arbitraryLp-nested symmetric distributions in
Section 6. In Section 7 we generalize a result by Osiewalski and Steel (1993) on robust Bayesian
inference on the location parameter toLp-nested symmetric distributions. In Section 8 we discuss
the relationship ofLp-nested symmetric distributions to ICA and ISA, and their possible role as
priors on hidden variables in over-complete linear models. Finally, we derive a non-linear ICA al-
gorithm for linearly mixed non-factorialLp-nested symmetric sources in Section 9 which we call
nested radial factorization (NRF).

2. Lp-nested Functions, Coordinate Transformation and Jacobian

Consider the function

f (xxx) =
(
|x1|

p/0 +(|x2|
p1 + |x3|

p1)
p/0
p1

) 1
p/0 (1)

with p/0, p1 ∈ R
+. This function is obviously a cascade of twoLp-norms and is thus positively

homogeneous of degree one. Figure 1(a) shows this function visualizedas a tree. Naturally, any
tree like the ones in Figure 1 corresponds to a function of the kind of Equation (1). In general, then
leaves of the tree correspond to then coefficients of the vectorxxx∈Rn and each inner node computes
theLp-norm of its children using its specificp. We call the class of functions which is generated
in this wayLp-nestedand the corresponding distributions, which are symmetric or invariant with
respect to it,Lp-nested symmetric distributions.

Lp-nested functions are much more flexible in creating different shapes of level sets than single
Lp-norms. Those level sets become the iso-density contours in the family ofLp-nested symmetric
distributions. Figure 2 shows a variety of contours generated by the simplestnon-trivial Lp-nested
function shown in Equation (1). The shapes show the unit spheres for all possible combinations
of p/0, p1 ∈ {0.5,1,2,10}. On the diagonal,p/0 andp1 are equal and therefore constituteLp-norms.
The corresponding distributions are members of theLp-spherically symmetric class.

To make general statements about generalLp-nested functions, we introduce a notation that is
suitable for the tree structure ofLp-nested functions. As we will heavily use that notation in the
remainder of the paper, we would like to emphasize the importance of the following paragraphs.
We will illustrate the notation with an example below. Additionally, Figure 1 and Table1 can be
used for reference.

We use multi-indices to denote the different nodes of the tree corresponding to anLp-nested
function f . The function f = f /0 itself computes the valuev/0 at the root node (see Figure 1).
Those values are denoted by variablesv. The functions corresponding to its children are denoted
by f1, ..., fℓ /0 , that is, f (·) = f /0(·) = ‖( f1(·), ..., fℓ /0(·))‖p/0 . We always use the letter “ℓ” indexed by
the node’s multi-index to denote the total number of direct children of that node. The functions of
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(a) Equation (1) as tree. (b) Equation (1) as tree in multi-index notation.

Figure 1: Equation (1) visualized as a tree with two different naming conventions. Figure (a) shows
the tree where the nodes are labeled with the coefficients ofxxx ∈ R

n. Figure (b) shows
the same tree in multi-index notation where the multi-index of a node describes the path
from the root node to that node in the tree. The leavesv1,v2,1 andv2,2 still correspond to
x1,x2 andx3, respectively, but have been renamed to the multi-index notation used in this
article.

f (·) = f /0(·) Lp-nested function

I = i1, ..., im Multi-index denoting a node in the tree: The single indices describe

the path from the root node to the respective nodeI .

xxxI All entries inxxx that correspond to the leaves in the subtree under

the nodeI

xxxÎ All entries inxxx that are not leaves in the subtree under

the nodeI

fI (·) Lp-nested function corresponding to the subtree under the nodeI

v/0 Function value at the root node

vI Function value at an arbitrary node with multi-indexI

ℓI The number of direct children of a nodeI

nI The number of leaves in the subtree under the nodeI

vvvI ,1:ℓI Vector with the function values at the direct children of a nodeI

Table 1: Summary of the notation used forLp-nested functions in this article.

the children of theith child of the root node are denoted byfi,1, ..., fi,ℓi and so on. In this manner,
an index is added for denoting the children of a particular node in the tree and each multi-index
denotes the path to the respective node in the tree. For the sake of compactnotation, we use upper
case letters to denote a single multi-indexI = i1, ..., iℓ. The range of the single indices and the length
of the multi-index should be clear from the context. A concatenationI ,k of a multi-indexI with
a single indexk corresponds to addingk to the index tuple, that is,I ,k = i1, ..., im,k. We use the
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Figure 2: Variety of contours created by theLp-nested function of Equation (1) for all combinations
of p/0, p1 ∈ {0.5,1,2,10}.

convention thatI , /0 = I . Those coefficients of the vectorxxx that correspond to leaves of the subtree
under a node with the indexI are denoted byxxxI . The complement of those coefficients, that is, the
ones that are not in the subtree under the nodeI , are denoted byxxxÎ . The number of leaves in a
subtree under a nodeI is denoted bynI . If I denotes a leaf thennI = 1.

TheLp-nested function associated with the subtree under a nodeI is denoted by

fI (xxxI ) = ||( fI ,1(xxxI ,1), ..., fI ,ℓI (xxxI ,ℓI ))
⊤||pI .
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Just like for the root node, we use the variablevI to denote the function valuevI = fI (xxxI ) of a subtree
I . A vector with the function values of the children ofI is denoted with bold fontvvvI ,1:ℓI where the
colon indicates that we mean the vector of the function values of theℓI children of nodeI :

fI (xxxI ) = ||( fI ,1(xxxI ,1), ..., fI ,ℓI (xxxI ,ℓI ))
⊤||pI

= ||(vI ,1, ...,vI ,ℓI )
⊤||pI = ||vvvI ,1:ℓI ||pI .

Note that we can assign an arbitraryp to leaf nodes sinceps for single variables always cancel.
For that reason we can choose an arbitraryp for convenience and fix its value top= 1. Figure 1(b)
shows the multi-index notation for our example of Equation (1).

To illustrate the notation: LetI = i1, ..., id be the multi-index of a node in the tree.i1, ..., id
describes the path to that node, that is, the respective node is theithd child of the ithd−1 child of
the ithd−2 child of the ... of theith1 child of the root node. Assume that the leaves in the subtree
below the nodeI cover the vector entriesx2, ...,x10. ThenxxxI = (x2, ...,x10), xxxÎ = (x1,x11,x12, ...),
and nI = 9. Assume that nodeI hasℓI = 2 children. Those would be denoted byI ,1 and I ,2.
The function realized by nodeI would be denoted byfI and only acts onxxxI . The value of the
function would befI (xxxI ) = vI and the vector containing the values of the children ofI would be
vvvI ,1:2 = (vI ,1,vI ,2)

⊤ = ( fI ,1(xxxI ,1), fI ,2(xxxI ,2))
⊤.

We now introduce a coordinate representation specially tailored toLp-nested symmetrically
distributed variables: One of the most important consequences of the positive homogeneity off
is that it can be used to “normalize” vectors and, by that property, createa polar like coordinate
representation of a vectorxxx. Such polar-like coordinates generalize the coordinate representation
for Lp-norms by Gupta and Song (1997).

Definition 1 (Polar-like Coordinates) We define the following polar-like coordinates for a vector
xxx∈ R

n:

ui =
xi

f (xxx)
for i = 1, ...,n−1,

r = f (xxx).

The inverse coordinate transformation is given by

xi = rui for i = 1, ...,n−1,

xn = r∆nun

where∆n = sgnxn and un =
|xn|
f (xxx) .

Note thatun is not part of the coordinate representation since normalization with 1/ f (xxx) de-
creases the degrees of freedomuuu by one, that is,un can always be computed from all otherui by
solving f (uuu) = f (xxx/ f (xxx)) = 1 for un. We use the termun only for notational simplicity. With a
slight abuse of notation, we will useuuu to denote the normalized vectorxxx/ f (xxx) or only its firstn−1
components. The exact meaning should always be clear from the context.

The definition of the coordinates is exactly the same as the one by Gupta and Song (1997)
with the only difference that theLp-norm is replaced by anLp-nested function. Just as in the case
of Lp-spherical coordinates, it will turn out that the determinant of the Jacobian of the coordinate
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transformation does not depend on the value of∆n and can be computed analytically. The deter-
minant is essential for deriving the uniform distribution on the unitLp-nested sphereL f , that is,
the 1-level set off . Apart from that, it can be used to compute the radial distribution for a given
Lp-nested symmetric distribution. We start by stating the general form of the determinant in terms
of the partial derivatives∂un

∂uk
, uk andr. Afterwards we demonstrate that those partial derivatives have

a special form and that most of them cancel in Laplace’s expansion of the determinant.

Lemma 2 (Determinant of the Jacobian) Let r and uuu be defined as in Definition 1. The general

form of the determinant of the JacobianJ =
(

∂xi
∂y j

)
i j

of the inverse coordinate transformation for

y1 = r and yi = ui−1 for i = 2, ...,n, is given by

|detJ |= rn−1

(
−

n−1

∑
k=1

∂un

∂uk
·uk+un

)
. (2)

Proof The proof can be found in the Appendix A.

The problematic parts in Equation (2) are the terms∂un
∂uk

, which obviously involve extensive usage
of the chain rule. Fortunately, most of them cancel when inserting them back into Equation (2),
leaving a comparably simple formula. The remaining part of this section is devoted to computing
those terms and demonstrating how they vanish in the formula for the determinant.Before we state
the general case we would like to demonstrate the basic mechanism through a simple example.
We urge the reader to follow this example as it illustrates all important ideas about the coordinate
transformation and its Jacobian.

Example 1 Consider an Lp-nested function very similar to our introductory example of Equation
(1):

f (xxx) =
(
(|x1|

p1 + |x2|
p1)

p/0
p1 + |x3|

p/0
) 1

p/0 .

Setting uuu= xxx
f (xxx) and solving for u3 yields

f (uuu) = 1⇔ u3 =
(

1− (|u1|
p1 + |u2|

p1)
p/0
p1

) 1
p/0 . (3)

We would like to emphasize again, that u3 is actually not part of the coordinate representation and
only used for notational simplicity. By construction, u3 is always positive. This is no restriction since
Lemma 2 shows that the determinant of the Jacobian does not depend onits sign. However, when
computing the volume and the surface area of the Lp-nested unit sphere, it will become important
since it introduces a factor of2 to account for the fact that u3 (or un in general) can in principle
also attain negative values.

Now, consider

G2(uuu2̂) = g2(uuu2̂)
1−p/0 =

(
1− (|u1|

p1 + |u2|
p1)

p/0
p1

) 1−p/0
p/0 ,

F1(uuu1) = f1(uuu1)
p/0−p1 = (|u1|

p1 + |u2|
p1)

p/0−p1
p1 ,
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where the subindices of uuu, f , g, G and F have to be read as multi-indices. The function gI computes
the value of the node I from all other leaves that are not part of the subtree under I by fixing the
value of the root node to one.

G2(uuu2̂) and F1(uuu1) are terms that arise from applying the chain rule when computing the partial

derivatives∂u3
∂uk

. Taking those partial derivatives can be thought of as peeling off layer by layer
of Equation(3) via the chain rule. By doing so, we “move” on a path between u3 and uk. Each
application of the chain rule corresponds to one step up or down in the tree.First, we move upwards
in the tree, starting from u3. This produces the G-terms. In this example, there is only one step
upwards, but in general, there can be several, depending on the depthof un in the tree. Each step
up will produce one G-term. At some point, we will move downwards in the tree to reach uk. This
will produce the F-terms. While there are as many G-terms as upward steps, there is one term less
when moving downwards. Therefore, in this example, there is one term G2(uuu2̂) which originates
from using the chain rule upwards in the tree and one term F1(uuu1) from using it downwards. The
indices correspond to the multi-indices of the respective nodes.

Computing the derivative yields

∂u3

∂uk
=−G2(uuu2̂)F1(uuu1)∆k|uk|

p1−1.

By inserting the results in Equation (2) we obtain

1
r2 |J |=

2

∑
k=1

G2(uuu2̂)F1(uuu1)|uk|
p1 +u3

= G2(uuu2̂)

(
F1(uuu1)

2

∑
k=1

|uk|
p1 +1−F1(uuu1)F1(uuu1)

−1(|u1|
p1 + |u2|

p1)
p/0
p1

)

= G2(uuu2̂)

(
F1(uuu1)

2

∑
k=1

|uk|
p1 +1−F1(uuu1)

2

∑
k=1

|uk|
p1

)

= G2(uuu2̂).

The example suggests that the terms from using the chain rule downwards in the tree cancel
while the terms from using the chain rule upwards remain. The following proposition states that
this is true in general.

Proposition 3 (Determinant of the Jacobian) Let L be the set of multi-indices of the path from
the leaf un to the root node (excluding the root node) and let the terms GI ,ℓI (uuuÎ ,ℓI

) recursively be
defined as

GI ,ℓI (uuuÎ ,ℓI
) = gI ,ℓI (uuuÎ ,ℓI

)pI ,ℓI−pI =

(
gI (uuuÎ )

pI −
ℓ−1

∑
j=1

fI , j(uuuI , j)
pI

) pI ,ℓI
−pI

pI

where each of the functions gI ,ℓI computes the value of theℓth child of a node I as a function of its
neighbors(I ,1), ..., (I , ℓI −1) and its parent I while fixing the value of the root node to one. This
is equivalent to computing the value of the node I from all coefficients uuuÎ that are not leaves in the
subtree under I. Then, the determinant of the Jacobian for an Lp-nested function is given by

|detJ |= rn−1 ∏
L∈L

GL(uuuL̂).
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Proof The proof can be found in the Appendix A.

Let us illustrate the determinant with two examples:

Example 2 Consider a normal Lp-norm

f (xxx) =

(
n

∑
i=1

|xi |
p

) 1
p

which is obviously also an Lp-nested function. Resolving the equation for the last coordinate of

the normalized vector uuu yields gn(uuun̂) = un =
(
1−∑n−1

i=1 |ui |
p
) 1

p . Thus, the term Gn(uuun̂) is given by
(
1−∑n−1

i=1 |ui |
p
) 1−p

p which yields a determinant of|detJ |= rn−1
(
1−∑n−1

i=1 |ui |
p
) 1−p

p . This is exactly
the one derived by Gupta and Song (1997).

Example 3 Consider the introductory example

f (xxx) =
(
|x1|

p/0 +(|x2|
p1 + |x3|

p1)
p/0
p1

) 1
p/0 .

Normalizing and resolving for the last coordinate yields

u3 =
(
(1−|u1|

p/0)
p1
p/0 −|u2|

p1

) 1
p1

and the terms G2(uuu2̂) and G2,2(uuu2̂,2) of the determinant|detJ |= r2G2(uuu2̂)G2,2(uuu2̂,2) are given by

G2(uuu2̂) = (1−|u1|
p/0)

p1−p/0
p/0 ,

G2,2(uuu2̂,2) =
(
(1−|u1|

p/0)
p1
p/0 −|u2|

p1

) 1−p1
p1 .

Note the difference to Example 1 where x3 was at depth one in the tree while x3 is at depth two in
the current case. For that reason, the determinant of the Jacobian in Example 1 involved only one
G-term while it has two G-terms here.

3. Lp-Nested Symmetric andLp-Nested Uniform Distribution

In this section, we define theLp-nested symmetric and theLp-nested uniform distribution and derive
their partition functions. In particular, we derive the surface area of anarbitrary Lp-nested unit
sphereL f = {xxx ∈ R

n | f (xxx) = 1} corresponding to anLp-nested functionf . By Equation (5) of
Fernandez et al. (1995) everyν-spherical and hence anyLp-nested symmetric density has the form

ρ(xxx) =
φ( f (xxx))

f (xxx)n−1S f (1)
, (4)

whereS f is the surface area ofL f andφ is a density onR+. Thus, we need to compute the surface
area of an arbitraryLp-nested unit sphere to obtain the partition function of Equation (4).
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Proposition 4 (Volume and Surface of theLp-nested Sphere)Let f be an Lp-nested function and
let I be the set of all multi-indices denoting the inner nodes of the tree structure associated with f .
The volumeV f (R) and the surfaceS f (R) of the Lp-nested sphere with radius R are given by

V f (R) =
Rn2n

n ∏
I∈I

(
1

pℓI−1
I

ℓI−1

∏
k=1

B

[
∑k

i=1nI ,k

pI
,
nI ,k+1

pI

])
(5)

=
Rn2n

n ∏
I∈I

∏ℓI
k=1 Γ

[
nI ,k

pI

]

pℓI−1
I Γ

[
nI
pI

] , (6)

S f (R) = Rn−12n∏
I∈I

(
1

pℓI−1
I

ℓI−1

∏
k=1

B

[
∑k

i=1nI ,k

pI
,
nI ,k+1

pI

])
(7)

= Rn−12n∏
I∈I

∏ℓI
k=1 Γ

[
nI ,k

pI

]

pℓI−1
I Γ

[
nI
pI

] (8)

where B[a,b] = Γ[a]Γ[b]
Γ[a+b] denotes theβ-function.

Proof The proof can be found in the Appendix B.

Inserting the surface area in Equation 4, we obtain the general form of an Lp-nested symmetric
distribution for any given radial densityφ.

Corollary 5 (Lp-nested Symmetric Distribution) Let f be an Lp-nested function andφ a density
onR+. The corresponding Lp-nested symmetric distribution is given by

ρ(xxx) =
φ( f (xxx))

f (xxx)n−1S f (1)

=
φ( f (xxx))

2n f (xxx)n−1 ∏
I∈I


pℓI−1

I

ℓI−1

∏
k=1

B

[
∑k

i=1nI ,k

pI
,
nI ,k+1

pI

]−1

 . (9)

The results of Fernandez et al. (1995) imply that for anyν-spherically symmetric distribution,
the radial part is independent of the directional part, that is,r is independent ofuuu. The distribution
of uuu is entirely determined by the choice ofν, or by theLp-nested functionf in our case. The
distribution ofr is determined by the radial densityφ. Together, anLp-nested symmetric distribution
is determined by both, theLp-nested functionf and the choice ofφ. From Equation (9), we can see
that its density function must be the inverse of the surface area ofL f times the radial density when
transforming (4) into the coordinates of Definition 1 and separatingr anduuu (the factorf (xxx)n−1 = r
cancels due to the determinant of the Jacobian). For that reason we call the distribution ofuuu uniform
on the Lp-sphereL f in analogy to Song and Gupta (1997). Next, we state its form in terms of the
coordinatesuuu.

Proposition 6 (Lp-nested Uniform Distribution) Let f be an Lp-nested function. LetL be the
set of multi-indices on the path from the root node to the leaf correspondingto xn. The uniform
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distribution on the Lp-nested unit sphere, that is, the setL f = {xxx ∈ R
n| f (xxx) = 1} is given by the

following density over u1, ...,un−1

ρ(u1, , ...,un−1) =
∏L∈L GL(uuuL̂)

2n−1 ∏
I∈I


pℓI−1

I

ℓI−1

∏
k=1

B

[
∑k

i=1nI ,k

pI
,
nI ,k+1

pI

]−1

 .

Proof Since theLp-nested sphere is a measurable and compact set, the density of the uniformdis-
tribution is simply one over the surface area of theLp-nested unit sphere. The surfaceS f (1) is given
by Proposition 4. Transforming1

S f (1)
into the coordinates of Definition 1 introduces the determinant

of the Jacobian from Proposition 3 and an additional factor of 2 since the(u1, ...,un−1) ∈R
n−1 have

to account for both half-shells of theLp-nested unit sphere, that is, to account for the fact thatun

could have been be positive or negative. This yields the expression above.

Example 4 Let us again demonstrate the proposition at the special case where f is anLp-norm

f (xxx) = ||xxx||p = (∑n
i=1 |xi |

p)
1
p . Using Proposition 4, the surface area is given by

S||·||p = 2n 1

pℓ /0−1
/0

ℓ /0−1

∏
k=1

B

[
∑k

i=1nk

p/0
,
nk+1

p/0

]
=

2nΓn
[

1
p

]

pn−1Γ
[

n
p

] .

The factor Gn(uuun̂) is given by
(
1−∑n−1

i=1 |ui |
p
) 1−p

p (see the Lp-norm example before), which, after
including the factor2, yields the uniform distribution on the Lp-sphere as defined in Song and Gupta
(1997)

p(uuu) =
pn−1Γ

[
n
p

]

2n−1Γn
[

1
p

]
(

1−
n−1

∑
i=1

|ui |
p

) 1−p
p

.

Example 5 As a second illustrative example, we consider the uniform density on the Lp-nested
unit ball, that is, the set{xxx∈ R

n| f (xxx)≤ 1}, and derive its radial distributionφ. The density of the
uniform distribution on the unit Lp-nested ball does not depend on xxx and is given byρ(xxx)= 1/V f (1).
Transforming the density into the polar-like coordinates with the determinant from Proposition 3
yields

1
V f (1)

=
nrn−1 ∏L∈L GL(uuuL̂)

2n−1 ∏
I∈I


pℓI−1

I

ℓI−1

∏
k=1

B

[
∑k

i=1nI ,k

pI
,
nI ,k+1

pI

]−1

 .

After separating out the uniform distribution on the Lp-nested unit sphere, we obtain the radial
distribution

φ(r) = nrn−1 for 0< r ≤ 1

which is aβ-distribution with parameters n and1.
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The radial distribution from the preceeding example is of great importance for our sampling
scheme derived in Section 6. The idea behind it is the following: First, a samplefrom a “simple”
Lp-nested symmetric distribution is drawn. Since the radial and the uniform component on theLp-
nested unit sphere are statistically independent, we can get a sample from the uniform distribution
on theLp-nested unit sphere by simply normalizing the sample from the simple distribution. After-
wards we can multiply it with a radius drawn from the radial distribution of theLp-nested symmetric
distribution that we actually want to sample from. The role of the simple distribution will be played
by the uniform distribution within theLp-nested unit ball. Sampling from it is basically done by
applying the steps in Proposition 4’s proof backwards. We lay out the sampling scheme in more
detail in Section 6.

4. Marginals

In this section we discuss two types of marginals: First, we demonstrate that, in contrast toLp-
spherically symmetric distributions, marginals ofLp-nested symmetric distributions are not nec-
essarilyLp-nested symmetric again. The second type of marginals we discuss are obtained by
collapsing all leaves of a subtree into the value of the subtree’s root node. For that case we derive
an analytical expression and show that the values of the root node’s children follow a special kind
of Dirichlet distribution.

Gupta and Song (1997) show that marginals ofLp-spherically symmetric distributions are again
Lp-spherically symmetric. This does not hold, however, forLp-nested symmetric distributions. This
can be shown by a simple counterexample. Consider theLp-nested function

f (xxx) =
(
(|x1|

p1 + |x2|
p1)

p/0
p1 + |x3|

p/0
) 1

p/0 .

The uniform distribution inside theLp-nested ball corresponding tof is given by

ρ(xxx) =
np1p/0Γ

[
2
p1

]
Γ
[

3
p/0

]

23Γ2
[

1
p1

]
Γ
[

2
p0

]
Γ
[

1
p0

] .

The marginalρ(x1,x3) is given by

ρ(x1,x3) =
np1p/0Γ

[
2
p1

]
Γ
[

3
p/0

]

23Γ2
[

1
p1

]
Γ
[

2
p0

]
Γ
[

1
p0

]
(
(1−|x3|

p/0)
p1
p/0 −|x1|

p1

) 1
p1 .

This marginal is notLp-spherically symmetric. Since anyLp-nested symmetric distribution in two
dimensions must beLp-spherically symmetric, it cannot beLp-nested symmetric as well. Figure
3 shows a scatter plot of the marginal distribution. Besides the fact that the marginals are not
contained in the family ofLp-nested symmetric distributions, it is also hard to derive a general
form for them. This is not surprising given that the general form of marginals for Lp-spherically
symmetric distributions involves an integral that cannot be solved analytically ingeneral and is
therefore not very useful in practice (Gupta and Song, 1997). For that reason we cannot expect
marginals ofLp-nested symmetric distributions to have a simple form.

In contrast to single marginals, it is possible to specify the joint distribution of leaves and inner
nodes of anLp-nested tree if all descendants of their inner nodes in question have beenintegrated
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a b

c d

Figure 3: Marginals ofLp-nested symmetric distributions are not necessarilyLp-nested symmetric:
Figure (a) shows a scatter plot of the(x1,x2)-marginal of the counterexample in the text
with p/0 = 2 andp1 = 1

2. Figure (d) displays the correspondingLp-nested sphere. (b-
c) show the univariate marginals for the scatter plot. Since any two-dimensional Lp-
nested symmetric distribution must beLp-spherically symmetric, the marginals should be
identical. This is clearly not the case. Thus, (a) is notLp-nested symmetric.

out. For the simple function above (the same that has been used in Example 1),the joint distribution
of x3 andv1 = ‖(x1,x2)

⊤‖p1 would be an example of such a marginal. Since marginalization affects
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the Lp-nested tree vertically, we call this type of marginalslayer marginals. In the following, we
present their general form.

From the form of a generalLp-nested function and the corresponding symmetric distribution,
one might think that the layer marginals areLp-nested symmetric again. However, this is not the case
since the distribution over theLp-nested unit sphere would deviate from the uniform distribution in
most cases if the distribution of its children wereLp-spherically symmetric.

Proposition 7 Let f be an Lp-nested function. Suppose we integrate out complete subtrees from
the tree associated with f , that is, we transform subtrees into radial times uniform variables and
integrate out the latter. LetJ be the set of multi-indices of those nodes that have become new leaves,
that is, whose subtrees have been removed, and let nJ be the number of leaves (in the original tree)
in the subtree under the node J. Let xxxĴ ∈ R

m denote those coefficients of xxx that are still part of
that smaller tree and let vvvJ denote the vector of inner nodes that became new leaves. The joint
distribution of xxxĴ and vvvJ is given by

ρ(xxxĴ ,vvvJ ) =
φ( f (xxxĴ ,vvvJ ))

Sf ( f (xxxĴ ,vvvJ ))
∏
J∈J

vnJ−1
J . (10)

Proof The proof can be found in the Appendix C.

Equation (10) has an interesting special case when considering the joint distribution of the root
node’s children.

Corollary 8 The children of the root node vvv1:ℓ /0 = (v1, ...,vℓ /0)
⊤ follow the distribution

ρ(vvv1:ℓ /0) =
pℓ /0−1

/0 Γ
[

n
p/0

]

f (v1, ...,vℓ /0)
n−12m∏ℓ /0

k=1 Γ
[

nk
p/0

]φ( f (v1, ...,vℓ /0))
ℓ /0

∏
i=1

vni−1
i

where m≤ ℓ /0 is the number of leaves directly attached to the root node. In particular, vvv1:ℓ /0 can
be written as the product RU, where R is the Lp-nested radius and the single|Ui |

p/0 are Dirichlet

distributed, that is,(|U1|
p/0 , ..., |Uℓ /0 |

p/0)∼ Dir
[

n1
p/0
, ...,

nℓ /0
p/0

]
.

Proof The joint distribution is simply the application of Proposition (7). Note thatf (v1, ...,vℓ /0) =
||vvv1:ℓ /0 ||p/0 . Applying the pointwise transformationsi = |ui |

p/0 yields

(|U1|
p/0 , ..., |Uℓ /0−1|

p/0)∼ Dir

[
n1

p/0
, ...,

nℓ /0

p/0

]
.

The Corollary shows that the valuesfI (xxxI ) at inner nodesI , in particular the ones directly below
the root node, deviate considerably fromLp-spherical symmetry. If they wereLp-spherically sym-
metric, the|Ui |

p should follow a Dirichlet distribution with parametersαi =
1
p as has been already

shown by Song and Gupta (1997). The Corollary is a generalization of their result.
We can use the Corollary to prove an interesting fact aboutLp-nested symmetric distributions:

The only factorialLp-nested symmetric distribution must beLp-spherically symmetric.
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Proposition 9 Let xxx be Lp-nested symmetric distributed with independent marginals. Then xxx is
Lp-spherically symmetric distributed. In particular, xxx follows a p-generalized Normal distribution.

Proof The proof can be found in the Appendix D.

One immediate implication of Proposition 9 is that there is no factorial probability model corre-
sponding to mixed norm regularizers which have the form∑k

i=1‖xxxIk‖
q
p where the index setsIk form

a partition of the dimensions 1, ...,n (see, e.g., Zhao et al., 2008; Yuan and Lin, 2006; Kowalski
et al., 2008). Many machine learning algorithms are equivalent to minimizing the sum of a regu-
larizerR(www) and a loss functionL(www,xxx1, ...,xxxm) over the coefficient vectorwww. If the exp(−R(www))
and exp(−L(www,xxx1, ...,xxxm)) correspond to normalizeable density models, the minimizing solution
of the objective function can be seen as the maximum a posteriori (MAP) estimate of the poste-
rior p(www|xxx1, ...,xxxm) ∝ p(www) · p(xxx1, ...,xxxm|www) = exp(−R(www)) ·exp(−L(www,xxx1, ...,xxxm)). In that sense,
the regularizer naturally corresponds to the prior and the loss function corresponds to the likeli-
hood. Very often, regularizers are specified as a norm over the coefficient vectorwww which in turn
correspond to certain priors. For example, in Ridge regression (Hoerl,1962) the coefficients are
regularized via‖www‖22 which corresponds to a factorial zero mean Gaussian prior onwww. TheL1-norm
‖www‖1 in the LASSO estimator (Tibshirani, 1996), again, is equivalent to a factorial Laplacian prior
onwww. Like in these two examples, regularizers often correspond to afactorial prior.

Mixed norm regularizers naturally correspond toLp-nested symmetric distributions. Proposition
9 shows that there is no factorial prior that corresponds to such a regularizer. In particular, it implies
that the prior cannot be factorial between groups and coefficients at the same time. This means
that those regularizers implicitly assume statistical dependencies between the coefficient variables.
Interestingly, forq= 1 andp= 2 the intuition behind these regularizers is exactly that whole groups
Ik get switched on at once, but the groups are sparse. The Proposition shows that this might not only
be due to sparseness but also due to statistical dependencies between thecoefficients within one
group. TheLp-nested symmetric distribution which implements independence between groups will
be further discussed below as a generalization of thep-generalized Normal (see Section 8). Note
that the marginals can be independent if the regularizer is of the form∑k

i=1‖xxxIk‖
p
p. However, in

this casep = q and theLp-nested function collapses to a simpleLp-norm which means that the
regularizer is not mixed norm.

5. Maximum Likelihood Estimation of Lp-Nested Symmetric Distributions

In this section, we describe procedures for maximum likelihood fitting ofLp-nested symmetric dis-
tributions on data. We provide a toolbox online for fittingLp-spherically symmetric andLp-nested
symmetric distributions to data. The toolbox can be downloaded athttp://www.kyb.tuebingen.
mpg.de/bethge/code/.

Depending on which parameters are to be estimated, the complexity of fitting anLp-nested
symmetric distribution varies. We start with the simplest case and later continue withmore complex
ones. Throughout this subsection, we assume that the model has the formp(xxx) = ρ(Wxxx) · |detW|=

φ(Wxxx)
f (Wxxx)n−1S f (1)

· |detW| whereW ∈ R
n×n is a complete whitening matrix. This means that given any

whitening matrixW0, the freedom in fittingW is to estimate an orthonormal matrixQ ∈ SO(n)
such thatW = QW0. This is analogous to the case of elliptically contoured distributions where the
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distributions can be endowed with 2nd-order correlations viaW. In the following, we ignore the
determinant ofW since data points can always be rescaled such that detW = 1.

The simplest case is to fit the parameters of the radial distribution when the treestructure, the
values of thepI , andW are fixed. Due to the special form ofLp-nested symmetric distributions (4),
it then suffices to carry out maximum likelihood estimation on the radial component only, which
renders maximum likelihood estimation efficient and robust. This is because theonly remaining
parameters are the parametersϑϑϑ of the radial distribution and, therefore,

argmaxϑϑϑ logρ(Wxxx|ϑϑϑ) = argmaxϑϑϑ (− logS f ( f (Wxxx))+ logφ( f (Wxxx)|ϑϑϑ))
= argmaxϑϑϑ logφ( f (Wxxx)|ϑϑϑ).

In a slightly more complex case, when only the tree structure andW are fixed, the values of the
pI , I ∈ I andϑϑϑ can be jointly estimated via gradient ascent on the log-likelihood. The gradient for
a single data pointxxx with respect to the vectorppp that holds allpI for all I ∈ I is given by

∇ppp logρ(Wxxx) =
d
dr

logφ( f (Wxxx)) ·∇ppp f (Wxxx)−
(n−1)
f (Wxxx)

∇ppp f (Wxxx)−∇ppp logS f (1).

For i.i.d. data pointsxxxi the joint gradient is given by the sum over the gradients for the single data
points. Each of them involves the gradient off as well as the gradient of the log-surface area ofL f

with respect toppp, which can be computed via the recursive equations

∂
∂pJ

vI =





0 if I is not a prefix ofJ

v1−pI
I vpI−1

I ,k · ∂
∂pJ

vI ,k if I is a prefix ofJ
vJ
pJ

(
v−pJ

J ∑ℓJ
k=1vpJ

J,k · logvJ,k− logvJ

)
if J = I

and

∂
∂pJ

logS f (1) =−
ℓJ−1

pJ
+

ℓJ−1

∑
k=1

Ψ

[
∑k+1

i=1 nJ,k

pJ

]
∑k+1

i=1 nJ,k

p2
J

−
ℓJ−1

∑
k=1

Ψ

[
∑k

i=1nJ,k

pJ

]
∑k

i=1nJ,k

p2
J

−
ℓJ−1

∑
k=1

Ψ
[

nJ,k+1

pJ

]
nJ,k+1

p2
J

,

whereΨ[t] = d
dt logΓ[t] denotes the digamma function. When performing the gradient ascent, one

needs to set 000 as a lower bound forppp. Note that, in general, this optimization might be a highly
non-convex problem.

On the next level of complexity, only the tree structure is fixed, andW can be estimated along
with the other parameters by joint optimization of the log-likelihood with respect toppp, ϑϑϑ andW.
Certainly, this optimization problem is also not convex in general. Usually, it is numerically more
robust to whiten the data first with some whitening matrixW0 and perform a gradient ascent on the
special orthogonal groupSO(n) with respect toQ for optimizingW = QW0. Given the gradient
∇W logρ(Wxxx) of the log-likelihood, the optimization can be carried out by performing line searches
along geodesics as proposed by Edelman et al. (1999) (see also Absil et al. (2007)) or by projecting
∇W logρ(Wxxx) on the tangent spaceTWSO(n)) and performing a line search alongSO(n) in that
direction as proposed by Manton (2002).
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The general form of the gradient to be used in such an optimization scheme can be defined as

∇W logρ(Wxxx)

=∇W (−(n−1) · log f (Wxxx)+ logφ( f (Wxxx)))

=−
(n−1)
f (Wxxx)

·∇yyy f (Wxxx) ·xxx⊤+
d logφ(r)

dr
( f (Wxxx)) ·∇yyy f (Wxxx) ·xxx⊤,

where the derivatives off with respect toyyy are defined by recursive equations

∂
∂yi

vI =





0 if i 6∈ I

sgnyi if vI ,k = |yi |

v1−pI
I ·vpI−1

I ,k · ∂
∂yi

vI ,k for i ∈ I ,k.

Note, thatf might not be differentiable atyyy= 0. However, we can always define a sub-derivative at
zero, which is zero forpI 6= 1 and[−1,1] for pI = 1. Again, the gradient for i.i.d. data pointsxxxi is
given by the sum over the single gradients.

Finally, the question arises whether it is possible to estimate the tree structure from data as well.
A simple heuristic would be to start with a very large tree, for example, a full binary tree, and to
prune out inner nodes for which the parents and the children have sufficiently similar values for their
pI . The intuition behind this is that if they were exactly equal, they would cancel intheLp-nested
function. This heuristic is certainly sub-optimal. Firstly, the optimization will be time consuming
since there can be about as manypI as there are leaves in theLp-nested tree (a full binary tree onn
dimensions will haven−1 inner nodes) and due to the repeated optimization after the pruning steps.
Secondly, the heuristic does not cover all possible trees onn leaves. For example, if two leaves are
separated by the root node in the original full binary tree, there is no wayto prune out inner nodes
such that the path between those two nodes will not contain the root node anymore.

The computational complexity for the estimation of all other parameters despite thetree struc-
ture is difficult to assess in general because they depend, for example,on the particular radial dis-
tribution used. While the maximum likelihood estimation of a simple log-Normal distributiononly
involves the computation of a mean and a variance which are inO(m) for mdata points, a mixture of
log-Normal distributions already requires an EM algorithm which is computationally more expen-
sive. Additionally, the time it takes to optimize the likelihood depends on the starting point as well
as the convergence rate, and we neither have results about the convergence rate nor is it possible to
make problem independent statements about a good initialization of the parameters. For this reason
we state only the computational complexity of single steps involved in the optimization.

Computation of the gradient∇ppp logρ(Wxxx) involves the derivative of the radial distribution, the
computation of the gradients∇ppp f (Wxxx) and∇pppS f (1). Assuming that the derivative of the radial
distribution can be computed inO(1) for each single data point, the costly steps are the other two
gradients. Computing∇ppp f (Wxxx) basically involves visiting each node of the tree once and perform-
ing a constant number of operations for the local derivatives. Since every inner node in anLp-nested
tree must have at least two children, the worst case would be a full binarytree which has 2n− 1
nodes and leaves. Therefore, the gradient can be computed inO(nm) for m data points. For similar
reasons,f (Wxxx), ∇ppp logS f (1), and the evaluation of the likelihood can also be computed inO(nm).
This means that each step in the optimization ofppp can be doneO(nm) plus the computational costs
for the line search in the gradient ascent. When optimizing forW = QW0 as well, the computational
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costs per step increase toO(n3+ n2m) sincem data points have to be multiplied withW at each
iteration (requiringO(n2m) steps), and the line search involves projectingQ back ontoSO(n) which
requires an inverse matrix square root or a similar computation inO(n3).

For comparison, each step of fast ICA (Hyvärinen and O., 1997) for a complete demixing matrix
takesO(n2m) when using hierarchical orthogonalization andO(n2m+n3) for symmetric orthogo-
nalization. The same applies to fitting an ISA model (Hyvärinen and Hoyer, 2000; Hyvärinen
and Köster, 2006, 2007). A Gaussian Scale Mixture (GSM) model does not need to estimate an-
other orthogonal rotationQ because it belongs to the class of spherically symmetric distributions
and is, therefore, invariant under transformations fromSO(n) (Wainwright and Simoncelli, 2000).
Therefore, fitting a GSM corresponds to estimating the parameters of the scale distribution which is
O(nm) in the best case but might be costlier depending on the choice of the scale distribution.

6. Sampling from Lp-Nested Symmetric Distributions

In this section, we derive a sampling scheme for arbitraryLp-nested symmetric distributions which
can for example be used for solving integrals when usingLp-nested symmetric distributions for
Bayesian learning. Exact sampling from an arbitraryLp-nested symmetric distribution is in fact
straightforward due to the following observation: Since the radial and the uniform component are in-
dependent, normalizing a sample from anyLp-nested symmetric distribution tof -length one yields
samples from the uniform distribution on theLp-nested unit sphere. By multiplying those uni-
form samples with new samples from another radial distribution, one obtains samples from another
Lp-nested symmetric distribution. Therefore, for eachLp-nested functionf , a singleLp-nested sym-
metric distribution which can be easily sampled from is enough. Sampling from allotherLp-nested
symmetric distributions with respect tof is then straightforward due to the method we just de-
scribed. Gupta and Song (1997) sample from thep-generalized Normal distribution since it has in-
dependent marginals which makes sampling straightforward. Due to Proposition 9, no such factorial
Lp-nested symmetric distribution exists. Therefore, a sampling scheme like that for Lp-spherically
symmetric distributions is not applicable. Instead we choose to sample from the uniform distribu-
tion inside theLp-nested unit ball for which we already computed the radial distribution in Example
5. The distribution has the formρ(xxx) = 1

V f (1)
. In order to sample from that distribution, we will first

only consider the uniform distribution in the positive quadrant of the unitLp-nested ball which has
the formρ(xxx) = 2n

V f (1)
. Samples from the uniform distributions inside the whole ball can be obtained

by multiplying each coordinate of a sample with independent samples from the uniform distribution
over{−1,1}.

The idea of the sampling scheme for the uniform distribution inside theLp-nested unit ball is
based on the computation of the volume of theLp-nested unit ball in Proposition 4. The basic
mechanism underlying the sampling scheme below is to apply the steps of the proof backwards,
which is based on the following idea: The volume of theLp-unit ball can be computed by computing
its volume on the positive quadrant only and multiplying the result with 2n afterwards. The key is
now to not transform the whole integral into radial and uniform coordinates at once, but successively
upwards in the tree. We will demonstrate this through a brief example which alsoshould make the
sampling scheme below more intuitive. Consider theLp-nested function

f (xxx) =
(
|x1|

p/0 +(|x2|
p1 + |x3|

p1)
p/0
p1

) 1
p/0 .
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To solve the integral ∫
{xxx: f (xxx)≤1 & xxx∈Rn

+}
dxxx,

we first transformx2 andx3 into radial and uniform coordinates only. According to Proposition 3 the

determinant of the mapping(x2,x3) 7→ (v1, ũ) = (‖xxx2:3‖p1,xxx2:3/‖xxx2:3‖p1) is given byv1(1− ũp1)
1−p1

p1 .
Therefore the integral transforms into

∫
{xxx: f (xxx)≤1 & xxx∈Rn

+}
dxxx=

∫
{v1,x1: f (x1,v1)≤1 & x1,v1∈R+}

∫ ∫
v1(1− ũp1)

1−p1
p1 dx1dv1dũ.

Now we can separate the integrals overx1 andv1, and the integral over ˜u, since the boundary of the
outer integral does only depend onv1 and not on ˜u:

∫
{xxx: f (xxx)≤1 & xxx∈Rn

+}
dxxx=

∫
(1− ũp1)

1−p1
p1 dũ ·

∫
{v1,x1: f (x1,v1)≤1 & x1,v1∈R+}

∫
v1dx1dv1.

The value of the first integral is known explicitly since the integrand equals the uniform distribution
on the‖ · ‖p1-unit sphere. Therefore, the value of the integral must be its normalizationconstant
which we can get using Proposition 4:

∫
(1− ũp1)

1−p1
p1 dũ=

Γ
[

1
p1

]2
· p1

Γ
[

2
p1

] .

An alternative way to arrive at this result is to use the transformations= ũp1 and to notice that the
integrand is a Dirichlet distribution with parametersαi =

1
p1

. The normalization constant of the
Dirichlet distribution and the constants from the determinant of the Jacobian of the transformation
yield the same result.

To compute the remaining integral, the same method can be applied again yielding thevolume
of theLp-nested unit ball. The important part for the sampling scheme, however, is not the volume
itself but the fact that the intermediate results in this integration process equalcertain distributions.
As shown in Example 5 the radial distribution of the uniform distribution on the unit ball is β [n,1],
and as just indicated by the example above, the intermediate results can be seen as transformed
variables from a Dirichlet distribution. This fact holds true even for more complexLp-nested unit
balls although the parameters of the Dirichlet distribution can be slightly different. Reversing the
steps leads us to the following sampling scheme. First, we sample from theβ-distribution which
gives us the radiusv/0 on the root node. Then we sample from the appropriate Dirichlet distribution
and exponentiate the samples by1

p/0
which transforms them into the analogs of the variableu from

above. Scaling the result with the samplev/0 yields the values of the root node’s children, that
is, the analogs ofx1 andv1. Those are the new radii for the levels below them where we simply
repeat this procedure with the appropriate Dirichlet distributions and exponents. The single steps
are summarized in Algorithm 1.

The computational complexity of the sampling scheme isO(n). Since the sampling procedure
is like expanding the tree node by node starting with the root, the number of inner nodes and leaves
is the total number of samples that have to be drawn from Dirichlet distributions. Every node in an
Lp-nested tree must at least have two children. Therefore, the maximal number of inner nodes and
leaves is 2n−1 for a full binary tree. Since sampling from a Dirichlet distribution is also inO(n),
the total computational complexity for one sample is inO(n).
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Algorithm 1 Exact sampling algorithm forLp-nested symmetric distributions
Input: The radial distributionφ of anLp-nested symmetric distributionρ for theLp-nested function
f .
Output: Samplexxx from ρ.
Algorithm

1. Samplev/0 from a beta distributionβ [n,1].

2. For each inner nodeI of the tree associated withf , sample the auxiliary variablesssI from

a Dirichlet distribution Dir
[

nI ,1
pI
, ...,

nI ,ℓI
pI

]
wherenI ,k are the number of leaves in the subtree

under nodeI ,k. Obtain coordinates on theLp-nested sphere within the positive orthant by

sssI 7→ sss
1
pI
I = ũuuI (the exponentiation is taken component-wise).

3. Transform these samples to Cartesian coordinates byvI · ũuuI = vvvI ,1:ℓI for each inner node, start-
ing from the root node and descending to lower layers. The components ofvvvI ,1:ℓI constitute
the radii for the layer direct below them. IfI = /0, the radius had been sampled in step 1.

4. Once the two previous steps have been repeated until no inner node is left, we have a sample
xxx from the uniform distribution in the positive quadrant. Normalizexxx to get a uniform sample
from the sphereuuu= xxx

f (xxx) .

5. Sample a new radius ˜v/0 from the radial distribution of the target radial distributionφ and
obtain the sample viãxxx= ṽ/0 ·uuu.

6. Multiply each entryxi of x̃xx by an independent samplezi from the uniform distribution over
{−1,1}.

7. Robust Bayesian Inference of the Location

ForLp-spherically symmetric distributions with a location and a scale parameter

p(xxx|µµµ,τ) = τnρ(‖τ(xxx−µµµ)‖p),

Osiewalski and Steel (1993) derived the posterior in closed form usinga priorp(µµµ,τ) = p(µ) ·c·τ−1,
and showed thatp(xxx,µµµ) does not depend on the radial distributionφ, that is, the particular type of
Lp-spherically symmetric distributions used for a fixedp. The prior onτ corresponds to an improper
Jeffrey’s prior which is used to represent lack of prior knowledge onthe scale. The main implication
of their result is that Bayesian inference of the locationµµµ under that prior on the scale does not
depend on the particular type ofLp-spherically symmetric distribution used for inference. This
means that under the assumption of anLp-spherically symmetric distributed variable, for a fixedp,
one has to know the exact form of the distribution in order to compute the location parameter.

It is straightforward to generalize their result toLp-nested symmetric distributions and, hence,
making it applicable to a larger class of distributions. Note that when using anyLp-nested symmetric
distribution, introducing a scale and a location via the transformationxxx 7→ τ(xxx− µµµ) introduces a
factor ofτn in front of the distribution.
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Proposition 10 For fixed values p/0, p1, ... and two independent priors p(µµµ,τ) = p(µµµ) · cτ−1 of the
location µ and the scaleτ where the prior onτ is an improper Jeffrey’s prior, the joint distribution
p(xxx,µµµ) is given by

p(xxx,µµµ) = f (xxx−µµµ)−n ·c·
1
Z
· p(µµµ),

where Z denotes the normalization constant of the Lp-nested uniform distribution.

Proof Given anyLp-nested symmetric distributionρ( f (xxx)), the transformation into the polar-like
coordinates yields the following relation

1=
∫

ρ( f (xxx))dxxx=
∫ ∫

∏
L∈L

GL(uuuL̂)r
n−1ρ(r)drduuu=

∫
∏
L∈L

GL(uuuL̂)duuu·
∫

rn−1ρ(r)dr.

Since∏L∈L GL(uuuL̂) is the unnormalized uniform distribution on theLp-nested unit sphere, the inte-
gral must equal the normalization constant which we denote withZ for brevity (see Proposition 6
for an explicit expression). This implies thatρ has to fulfill

1
Z
=

∫
rn−1ρ(r)dr.

Writing down the joint distribution ofxxx,µµµ andτ, and using the substitutions= τ f (xxx−µµµ) we obtain

p(xxx,µµµ) =
∫

τnρ( f (τ(xxx−µµµ))) ·cτ−1 · p(µµµ)dτ

=
∫

sn−1ρ(s) ·c· p(µµµ) f (xxx−µµµ)−nds

= f (xxx−µµµ)−n ·c·
1
Z
· p(µµµ).

Note that this result could easily be extended toν-spherical distributions. However, in this case
the normalization constantZ cannot be computed for most cases and, therefore, the posterior would
not be known explicitly.

8. Relations to ICA, ISA and Over-Complete Linear Models

In this section, we explain the relations amongLp-spherically symmetric,Lp-nested symmetric,
ICA and ISA models. For a general overview see Figure 4.

The density model underlying ICA models the joint distribution of the signalxxx as a linear
superposition of statistically independent hidden sourcesAyyy = xxx or yyy = Wxxx. If the marginals
of the hidden sources belong to the exponential power family, we obtain thep-generalized Nor-
mal which is a subset of theLp-spherically symmetric class. Thep-generalized Normal distri-
bution p(yyy) ∝ exp(−τ‖yyy‖p

p) is a density model that is often used in ICA algorithms for kurtotic
natural signals like images and sound by optimizing a demixing matrixW w.r.t. to the model
p(yyy) ∝ exp(−τ‖Wxxx‖p

p) (Lee and Lewicki, 2000; Zhang et al., 2004; Lewicki, 2002). It can be
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L
p
-nested 

symmetric
ISA

L
p
-spherically

symmetric
ICA

L
2
-spherically

symmetric

L
p
-nested ISA

p-generalized

Normal

Gaussian

Figure 4: Relations between the different classes of distributions: Arrows indicate that the child
class is a specialization (subset) of the parent class. Polygon-shaped classes are inter-
sections of those parent classes which are connected via edges with round arrow-heads.
For one-dimensional subspaces ISA is a superclass of ICA. All classes belonging to ISA
are colored white or light gray.Lp-nested symmetric distributions are a superclass ofLp-
spherically symmetric distributions. AllLp-nested symmetric models are colored dark or
light gray. Lp-nested ISA models live in the intersection ofLp-nested symmetric distri-
butions and ISA models. ThoseLp-nested ISA models that areLp-spherically symmetric
are also ICA models: This is the class ofp-generalized Normal distributions. Ifp is fixed
to two, one obtains theL2-spherically symmetric distributions. The only class of distri-
butions in the intersection between spherically symmetric distributions and ICA models
is the Gaussian.

shown that thep-generalized Normal is the only factorial model in the class ofLp-spherically sym-
metric models (Sinz et al., 2009a), and, by Proposition 9, also the only factorial Lp-nested symmetric
distribution.

An important generalization of ICA is the independent subspace analysis (ISA) proposed by
Hyvärinen and Hoyer (2000) and by Hyvärinen and K̈oster (2007) who usedLp-spherically symmet-
ric distributions to model the single subspaces, that is, eachρk below wasLp-spherically symmetric.
Like in ICA, ISA models the hidden sources of the signal as a product of multivariate distributions:

ρ(yyy) =
K

∏
k=1

ρk(yyyIk).

Here,yyy=Wxxx andIk are index sets selecting the different subspaces from the responses of W to xxx.
The collection of index setsIk forms a partition of 1, ...,n. ICA is a special case of ISA in which

3431



SINZ AND BETHGE

Ik = {k} such that all subspaces are one-dimensional. For the ISA models used byHyvärinen et al.
the distribution on the subspaces was chosen to be either spherically orLp-spherically symmetric.

In its general form, ISA is not a generalization ofLp-spherically symmetric distributions. The
most general ISA model for the transformed datayyy=Wxxx does not assume a certain type of distri-
bution on the single subspace like in Hyvärinen and K̈oster (2007). While one could say for any
non-factorial distribution that a factorial product over subspaces is ageneralization, this is certainly
a trivial step. Only in this particular sense is the particular ISA model by Hyvärinen and K̈oster
(2007) a generalization ofLp-spherically symmetric distributions.

In contrast to ISA,Lp-nested symmetric distributions generally do not make an independence
assumption on the “subspaces”. In fact, for most of the models the subspaces will be dependent
(see also our diagram in Figure 4). Therefore, not every ISA model isautomaticallyLp-nested
symmetric and vice versa. In fact, in Sinz et al. (2009b) we have demonstrated for natural images
that the dependenciesbetweensubspaces is stronger than the dependencieswithin subspaces on
natural image patches. This is in stark contrast to the assumptions underlyingISA.

Note also that the product ofLp-spherically symmetric distributions used by Hyvärinen and
Köster (2007) is not anLp-nested function (Equation (6) in Hyvärinen and K̈oster, 2007) since
the singlea j can be different and, therefore, the overall function is not positivelyhomogeneous in
general.

ICA and ISA have been used to infer features from natural signals, in particular from natu-
ral images. However, as mentioned by several authors (Zetzsche et al.,1993; Simoncelli, 1997;
Wainwright and Simoncelli, 2000) and demonstrated quantitatively by Bethge (2006) and Eich-
horn et al. (2009), the assumptions underlying linear ICA are not well matched by the statistics
of the pixel intensities of natural images. A reliable parametric way to assess how well the inde-
pendence assumption is met by a signal at hand is to fit a more general classof distributions that
contains factorial as well as non-factorial distributions which both can equally well reproduce the
marginals. By comparing the likelihood on held out test data between the best fitting non-factorial
and the best-fitting factorial case, one can assess how well the sourcescan be described by a facto-
rial distribution. For natural images, for example, one can use an arbitrary Lp-spherically symmetric
distributionρ(‖Wxxx‖p), fit it to the whitened data and compare its likelihood on held out test data
to the one of thep-generalized Normal distribution (Sinz and Bethge, 2009). Since any choice of
radial distributionφ determines a particularLp-spherically symmetric distribution, the idea is to ex-
plore the space between factorial and non-factorial models by using a very flexible densityφ on the
radius. Note that having an explicit expression of the normalization constant allows for particularly
reliable model comparisons via the likelihood. For many graphical models, for instance, such an
explicit and computable expression is often not available.

The same type of dependency-analysis can be carried out for ISA using Lp-nested symmetric
distributions (Sinz et al., 2009b). Figure 5 shows theLp-nested tree corresponding to an ISA with
four subspaces. In general, for such trees, each inner node—except the root node—corresponds to
a single subspace. When using the radial distribution

φ /0(v/0) =
p/0vn−1

/0

Γ
[

n
p/0

]
s

n
p/0

exp

(
−

vp/0
/0
s

)
, (11)
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Figure 5: Tree corresponding to anLp-nested ISA model.

the subspacesv1, ...,vℓ /0 become independent and one obtains an ISA model of the form

ρ(yyy) =
1
Z

exp

(
−

f (yyy)p/0

s

)

=
1
Z

exp

(
−

∑ℓ /0
k=1‖yyyIk‖pk

s

)

=
pℓ /0

/0

s
n
p/0 ∏ℓ /0

i=1 Γ
[

ni
p/0

] exp

(
−

∑ℓ /0
k=1‖yyyIk‖pk

s

)
ℓ /0

∏
k=1

pℓk−1
k Γ

[
nk
pk

]

2nkΓnk

[
1
pI

] ,

which hasLp-spherically symmetric distributions on each subspace. Note that this radial distribution
is equivalent to a Gamma distribution whose variables have been raised to the power of 1

p/0
. In the

following we will denote distributions of this type withγp(u,s), whereu ands are the shape and
scale parameter of the Gamma distribution, respectively. The particularγp distribution that results in
independent subspaces has arbitrary scale but shape parameteru= n

p/0
. When using any other radial

distribution, the different subspaces do not factorize, and the distribution is also not an ISA model.
In that senseLp-nested symmetric distributions are a generalization of ISA. Note, however,that not
every ISA model is alsoLp-nested symmetric since not every product of arbitrary distributions on
the subspaces, even if they areLp-spherically symmetric, must also beLp-nested.

It is natural to ask, whetherLp-nested symmetric distributions can serve as a prior distribution
p(yyy|ϑϑϑ) over hidden factors in over-complete linear models of the form

p(xxx|W,σ,ϑϑϑ) =
∫

p(xxx|Wyyy,σ)p(yyy|ϑϑϑ)dyyy,

wherep(xxx|Wyyy) represents the likelihood of the observed data pointxxx given the hidden factorsyyy
and the over-complete matrixW. For example,p(xxx|Wyyy,σ) =N (Wyyy,σ · I) could be a Gaussian like
in Olshausen and Field (1996). Unfortunately, such a model would suffer from the same problems
as all over-complete linear models: While sampling from the prior is straightforward sampling
from the posteriorp(yyy|xxx,W,ϑϑϑ,σ) is difficult because a whole subspace ofyyy leads to the samexxx.
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Since parameter estimation either involves solving the high-dimensional integralp(xxx|W,σ,ϑϑϑ) =∫
p(xxx|Wyyy,σ)p(yyy|ϑϑϑ)dyyy or sampling from the posterior, learning is computationally demanding in

such models. Various methods have been proposed to learnW, ranging from sampling the posterior
only at its maximum (Olshausen and Field, 1996), approximating the posterior with a Gaussian
via the Laplace approximation (Lewicki and Olshausen, 1999) or using Expectation Propagation
(Seeger, 2008). In particular, all of the above studies either do not fithyper-parametersϑϑϑ for the
prior (Olshausen and Field, 1996; Lewicki and Olshausen, 1999) or rely on the factorial structure
of it (Seeger, 2008). SinceLp-nested symmetric distributions do not provide such a factorial prior,
Expectation Propagation is not directly applicable. An approximation like in Lewicki and Olshausen
(1999) might be possible, but additionally estimating the parametersϑϑϑ of theLp-nested symmetric
distribution adds another level of complexity in the estimation procedure. Exploring such over-
complete linear models with a non-factorial prior may be an interesting direction toinvestigate, but
it will need a significant amount of additional numerical and algorithmical work to find an efficient
and robust estimation procedure.

9. Nested Radial Factorization withLp-Nested Symmetric Distributions

Lp-nested symmetric distribution also give rise to a non-linear ICA algorithm for linearly mixed
non-factorialLp-nested hidden sourcesyyy. The idea is similar to the radial factorization algorithms
proposed by Lyu and Simoncelli (2009) and Sinz and Bethge (2009). For this reason, we call it
nested radial factorization (NRF). For a one layerLp-nested tree, NRF is equivalent to radial fac-
torization as described in Sinz and Bethge (2009). If additionallyp is set top = 2, one obtains
the radial Gaussianization by Lyu and Simoncelli (2009). Therefore, NRF is a generalization of
radial Factorization. It has been demonstrated that radial factorization algorithms outperform linear
ICA on natural image patches (Lyu and Simoncelli, 2009; Sinz and Bethge, 2009). SinceLp-nested
symmetric distributions are slightly better in likelihood on natural image patches (Sinz et al., 2009b)
and since the difference in the average log-likelihood directly corresponds to the reduction in depen-
dencies between the single variables (Sinz and Bethge, 2009), NRF will slightly outperform radial
factorization on natural images. For other types of data the performance will depend on how well
the hidden sources can be modeled by a linear superposition of—possibly non-independent—Lp-
nested symmetrically distributed sources. Here we state the algorithm as a possible application of
Lp-nested symmetric distributions for unsupervised learning.

The idea is based on the observation that the choice of the radial distributionφ already deter-
mines the type ofLp-nested symmetric distribution. This also means that by changing the radial dis-
tribution by remapping the data, the distribution could possibly be turned in a factorial one. Radial
factorization algorithms fit anLp-spherically symmetric distribution with a very flexible radial dis-
tribution to the data and map this radial distributionφs (s for source) into the one of ap-generalized
Normal distribution by the mapping

yyy 7→
(F −1
⊥⊥ ◦Fs)(‖yyy‖p)

‖yyy‖p
·yyy, (12)

whereF⊥⊥ andFs are the cumulative distribution functions of the two radial distributions involved.
The mapping basically normalizes the demixed sourceyyy and rescales it with a new radius that has
the correct distribution.
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Exactly the same method cannot work forLp-nested symmetric distributions since Proposition
9 states that there is no factorial distribution into which we could map the data by merely changing
the radial distribution. Instead we have to remap the data in an iterative fashion beginning with
changing the radial distribution at the root node into the radial distribution ofthe Lp-nested ISA
shown in Equation (11). Once the nodes are independent, we repeat thisprocedure for each of
the child nodes independently, then for their child nodes and so on, until only leaves are left. The
rescaling of the radii is a non-linear mapping since the transform in Equation(12) is non-linear.
Therefore, NRF is a non-linear ICA algorithm.

Figure 6: Lp-nested non-linear ICA for the tree of Example 6: For an arbitraryLp-nested symmetric
distribution, using Equation (12), the radial distribution can be remapped such that the
children of the root node become independent. This is indicated in the plot viadotted
lines. Once the data have been rescaled with that mapping, the children of root node can
be separated. The remaining subtrees are againLp-nested symmetric and have a particular
radial distribution that can be remapped into the same one that makes their rootnodes’
children independent. This procedure is repeated until only leaves are left.

We demonstrate this with a simple example.

Example 6 Consider the function

f (yyy) =

(
|y1|

p/0 +

(
|y2|

p/0,2 +(|y3|
p2,2 + |y4|

p2,2)
p/0,2
p2,2

) p/0
p/0,2

) 1
p/0

for yyy = Wxxx where W has been estimated by fitting an Lp-nested symmetric distribution with a
flexible radial distribution to Wxxx as described in Section 5. Assume that the data has already been
transformed once with the mapping of Equation(12). This means that the current radial distribution
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is given by (11) where we chose s= 1 for convenience. This yields a distribution of the form

ρ(yyy) =
p/0

Γ
[

n
p/0

] exp

(
−|y1|

p/0−

(
|y2|

p/0,2 +(|y3|
p2,2 + |y4|

p2,2)
p/0,2
p2,2

) p/0
p/0,2

)

×
1
2n ∏

I∈I

pℓI−1
I

Γ
[

nI
pI

]

∏ℓI
k=1 Γ

[
nI ,k

pI

] .

Now we can separate the distribution of y1 from the distribution over y2, ...,y4. The distribution of
y1 is a p-generalized Normal

p(y1) =
p/0

2Γ
[

1
p/0

] exp(−|y1|
p/0) .

Thus the distribution of y2, ...,y4 is given by

ρ(y2, ...,y4) =
p/0

Γ
[

n/0,2
p/0

] exp

(
−

(
|y2|

p/0,2 +(|y3|
p2,2 + |y4|

p2,2)
p/0,2
p2,2

) p/0
p/0,2

)

×
1

2n−1 ∏
I∈I\ /0

pℓI−1
I

Γ
[

nI
pI

]

∏ℓI
k=1 Γ

[
nI ,k

pI

] .

By using Equation (9) we can identify the new radial distribution to be

φ(v/0,2) =
p/0vn−2

/0,2

Γ
[

n/0,2
p/0

] exp
(
−vp/0

/0,2

)
.

Replacing this distribution by the one for the p-generalized Normal (for data we would use the
mapping in Equation (12)), we obtain

ρ(y2, ...,y4) =
p/0,2

Γ
[

n/0,2
p/0,2

] exp

(
−|y2|

p/0,2− (|y3|
p2,2 + |y4|

p2,2)
p/0,2
p2,2

)

×
1

2n−1 ∏
I∈I\ /0

pℓI−1
I

Γ
[

nI
pI

]

∏ℓI
k=1 Γ

[
nI ,k

pI

] .

Now, we can separate out the distribution of y2 which is again p-generalized Normal. This leaves
us with the distribution for y3 and y4

ρ(y3,y4) =
p/0,2

Γ
[

n2,2
p/0,2

] exp

(
−(|y3|

p2,2 + |y4|
p2,2)

p/0,2
p2,2

)
1

2n−2 ∏
I∈I\{ /0,( /0,2)}

pℓI−1
I

Γ
[

nI
pI

]

∏ℓI
k=1 Γ

[
nI ,k

pI

] .

For this distribution we can repeat the same procedure which will also yield p-generalized Normal
distributions for y3 and y4.
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Algorithm 2 Recursion NRF(yyy, f ,φs)
Input: Data pointyyy, Lp-nested functionf , current radial distributionφs,
Output: Non-linearly transformed data pointyyy
Algorithm

1. Set the target radial distribution to beφ⊥⊥← γp


 n/0

p/0
,

Γ
[

1
p/0

] p/0
2

Γ
[

3
p/0

] p/0
2




2. Setyyy← F −1
⊥⊥ (Fs( f (yyy)))

f (yyy) ·yyy whereF denotes the cumulative distribution function of the respective
φ.

3. For all childreni of the root node that are not leaves:

(a) Setφs← γp


n/0,i

p/0
,

Γ
[

1
p/0

] p/0
2

Γ
[

3
p/0

] p/0
2




(b) Setyyy/0,i ← NRF(yyy/0,i , f /0,i ,φs). Note that in the recursion/0, i will become the new/0.

4. Returnyyy

This non-linear procedure naturally carries over to arbitraryLp-nested trees and distributions,
thus yielding a general non-linear ICA algorithm for linearly mixed non-factorial Lp-nested sym-
metric sources. For generalizing Example 6, note the particular form of the radial distributions
involved. As already noted above, the distribution (11) on the root node’s values that makes its
children statistically independent is that of a Gamma distributed variable with shape parametern/0

p/0

and scale parameters which has been raised to the power of1
p/0

. In Section 8 we denoted this class
of distributions withγp [u,s], whereu and s are the shape and the scale parameter, respectively.
Interestingly, the radial distributions of the root node’s children are alsoγp except that the shape pa-
rameter isn/0,i

p/0
. The goal of the radial remapping of the children’s values is hence just changing the

shape parameter fromn/0,i
p/0

to n/0,i
p/0,i

. Of course, it is also possible to change the scale parameter of the
single distributions during the radial remappings. This will not affect the statistical independence
of the resulting variables. In the general algorithm, that we describe now,we choosessuch that the
transformed data is white.

The algorithm starts with fitting a generalLp-nested model of the formρ(Wxxx) as described in
Section 5. Once this is done, the linear demixing matrixW is fixed and the hidden non-factorial
sources are recovered viayyy=Wxxx. Afterwards, the sourcesyyy are non-linearly made independent by
calling the recursion specified in Algorithm 2 with the parametersWxxx, f andφ, whereφ is the radial
distribution of the estimated model.

The computational complexity for transforming a single data point isO(n2) because of the ma-
trix multiplicationWxxx. In the non-linear transformation, each single data dimension is not rescaled
more thatn times which means that the rescaling is certainly also inO(n2).

An important aspect of NRF is that it yields a probabilistic model for the transformed data.
This model is simply a product ofn independent exponential power marginals. Since the radial
remappings do not change the likelihood, the likelihood of the non-linearly separated data is the
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same as the likelihood of the data underLp-nested symmetric distribution that was fitted to it in
the first place. However, in some cases, one might like to fit a different distribution to the outcome
of Algorithm 2. In that case the determinant of the transformation is necessary to determine the
likelihood of the input data—and not the transformed one—under the model. The following lemma
provides the determinant of the Jacobian for the non-linear rescaling.

Lemma 11 (Determinant of the Jacobian)Let zzz= NRF(Wxxx, f ,φs) as described above. Let ttt I

denote the values of Wxxx below the inner node I which have been transformed with Algorithm 2
up to node I. Let gI (r) = (Fφ⊥⊥ ◦Fφs)(r) denote the radial transform at node I in Algorithm 2.
Furthermore, letI denote the set of all inner nodes, excluding the leaves. Then, the determinant of

the Jacobian
(

∂zi
∂x j

)
i j

is given by

∣∣∣∣det
∂zi

∂x j

∣∣∣∣= |detW| ·∏
I∈I

∣∣∣∣
gI ( fI (ttt I ))

nI−1

fI (ttt I )nI−1 ·
φs( fI (ttt I ))

φ⊥⊥(gI ( fI (ttt I )))

∣∣∣∣

Proof The proof can be found in the Appendix E.

10. Conclusion

In this article we presented a formal treatment of the first tractable subclassof ν-spherical distribu-
tions which generalizes the important family ofLp-spherically symmetric distributions. We derived
an analytical expression for the normalization constant, introduced a coordinate system particularly
tailored toLp-nested functions, and computed the determinant of the Jacobian for the correspond-
ing coordinate transformation. Using these results, we introduced the uniform distribution on the
Lp-nested unit sphere and the general form of anLp-nested symmetric distribution for arbitrary
Lp-nested functions and radial distributions. We also derived an expression for the joint distribu-
tion of inner nodes of anLp-nested tree and derived a sampling scheme for an arbitraryLp-nested
symmetric distribution.

Lp-nested symmetric distributions naturally provide the class of probability distributions corre-
sponding to mixed norm priors, allowing full Bayesian inference in the corresponding probabilistic
models. We showed that a robustness result for Bayesian inference ofthe location parameter known
for Lp-spherically symmetric distributions carries over to theLp-nested symmetric class. We dis-
cussed the relationship ofLp-nested symmetric distributions to indepedent component (ICA) and
independent subspace Analysis (ISA), as well as its applicability as a prior distribution in over-
complete linear models. Finally, we showed howLp-nested symmetric distributions can be used to
construct a non-linear ICA algorithm called nested radial factorization (NRF).

The application ofLp-nested symmetric distribution has been presented in a previous conference
paper (Sinz et al., 2009b). Code for training this class of distribution is provided online under
http://www.kyb.tuebingen.mpg.de/bethge/code/.
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Appendix A. Determinant of the Jacobian

Proof [Lemma 2] The proof is very similar to the one in Song and Gupta (1997). To derive Equation
(2) one needs to expand the Jacobian of the inverse coordinate transformation with respect to the
last column using the Laplace’s expansion of the determinant. The term∆n can be factored out of
the determinant and cancels due to the absolute value around it. Therefore, the determinant of the
coordinate transformation does not depend on∆n.

The partial derivatives of the inverse coordinate transformation are given by:

∂
∂uk

xi = δikr for 1≤ i,k≤ n−1

∂
∂uk

xn = ∆nr
∂un

∂uk
for 1≤ k≤ n−1

∂
∂r

xi = ui for 1≤ i ≤ n−1

∂
∂r

xn = ∆nun.

Therefore, the structure of the Jacobian is given by

J =




r . . . 0 u1
...

. . .
...

...
0 . . . r un−1

∆nr ∂un
∂u1

. . . ∆nr ∂un
∂un−1

∆nun


 .

Since we are only interested in the absolute value of the determinant and since∆n ∈ {−1,1}, we
can factor out∆n and drop it. Furthermore, we can factor outr from the firstn−1 columns which
yields

|detJ |= rn−1

∣∣∣∣∣∣∣∣∣
det




1 . . . 0 u1
...

. . .
...

...
0 . . . 1 un−1

∂un
∂u1

. . . ∂un
∂un−1

un




∣∣∣∣∣∣∣∣∣
.

Now we can use the Laplace’s expansion of the determinant with respect tothe last column. For
that purpose, letJi denote the matrix which is obtained by deleting the last column and theith row
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from J . This matrix has the following structure

Ji =




1 0
... 0

1 0
... 1

0
...

0 1
∂un
∂u1

∂un
∂ui

∂un
∂un−1




.

We can transformJi into a lower triangular matrix by moving the column with all zeros and∂un
∂ui

bottom entry to the rightmost column ofJi . Each swapping of two columns introduces a factor of
−1. In the end, we can compute the value of detJi by simply taking the product of the diagonal
entries and obtain detJi = (−1)n−1−i ∂un

∂ui
. This yields

|detJ |= rn−1

(
n

∑
k=1

(−1)n+kuk detJk

)

= rn−1

(
n−1

∑
k=1

(−1)n+kuk detJk+(−1)2n∂xn

∂r

)

= rn−1

(
n−1

∑
k=1

(−1)n+kuk(−1)n−1−k ∂un

∂uk
+un

)

= rn−1

(
−

n−1

∑
k=1

uk
∂un

∂uk
+un

)
.

Before proving Proposition 3 stating that the determinant only depends on the termsGI (uuuÎ )
produced by the chain rule when used upwards in the tree, let us quickly outline the essential mech-
anism when taking the chain rule for∂un

∂uq
: Consider the tree corresponding tof . By definitionun is

the rightmost leaf of the tree. LetL, ℓL be the multi-index ofun. As in the example, the chain rule
starts at the leafun and ascends in the tree until it reaches the lowest node whose subtree contains
both,un anduq. At this point, it starts descending the tree until it reaches the leafuq. Depending
on whether the chain rule ascends or descends, two different forms ofderivatives occur: while as-
cending, the chain rule producesGI (uuuÎ )-terms like the one in the example above. At descending,
it producesFI (uuuI )-terms. The general definitions of theGI (uuuÎ )- andFI (uuuI )-terms are given by the
recursive formulae

GI ,ℓI (uuuÎ ,ℓI
) = gI ,ℓI (uuuÎ ,ℓI

)pI ,ℓI−pI =

(
gI (uuuÎ )

pI −
ℓI−1

∑
j=1

fI , j(uuuI , j)
pI

) pI ,ℓI
−pI

pI
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and

FI ,ir (uuuI ,ir ) = fI ,ir (uuuI ,ir )
pI−pI ,ir =

(
ℓI ,ir

∑
k=1

fI ,ir ,k(uuuI ,ir ,k)
pI ,ir

) pI−pI ,ir
pI ,ir

.

The next two lemmata are required for the proof of Proposition 3. We use thesomewhat sloppy
notationk∈ I , ir if the variableuk is a leaf in the subtree belowI , ir . The same notation is used forÎ .

Lemma 12 Let I= i1, ..., ir−1 and I, ir be any node of the tree associated with an Lp-nested function
f . Then the following recursions hold for the derivatives of gI ,ir (uuuÎ ,ir

)pI ,ir and fpI
I ,ir (uuuI ,ir ) w.r.t uq: If

uq is not in the subtree under the node I, ir , that is, k6∈ I , ir , then

∂
∂uq

fI ,ir (uuuI ,ir )
pI = 0

and

∂
∂uq

gI ,ir (uuuÎ ,ir
)pI ,ir =

pI ,ir

pI
GI ,ir (uuuÎ ,ir

) ·





∂
∂uq

gI (uuuÎ )
pI if q ∈ I

− ∂
∂uq

fI , j(uuuI , j)
pI if q ∈ I , j

for q∈ I , j and q 6∈ I ,k for k 6= j. Otherwise

∂
∂uq

gI ,ir (uuuÎ ,ir
)pI ,ir = 0 and

∂
∂uq

fI ,ir (uuuI ,ir )
pI =

pI

pI ,ir
FI ,ir (uuuI ,ir )

∂
∂uq

fI ,ir ,s(uuuI ,ir ,s)
pI ,ir

for q∈ I , ir ,s and q6∈ I , ir ,k for k 6= s.

Proof Both of the first equations are obvious, since only those nodes have a non-zero derivative for
which the subtree actually depends onuq. The second equations can be seen by direct computation

∂
∂uq

gI ,ir (uuuÎ ,ir
)pI ,ir = pI ,ir gI ,ir (uuuÎ ,ir

)pI ,ir−1 ∂
∂uq

GI ,ir (uuuÎ ,ir
)

= pI ,ir gI ,ir (uuuÎ ,ir
)pI ,ir−1 ∂

∂uq

(
gI (uuuÎ )

pI −
ℓI−1

∑
j=1

fI , j(uuuI , j)
pI

) 1
pI

=
pI ,ir

pI
gI ,ir (uuuÎ ,ir

)pI ,ir−1gI ,ir (uuuÎ ,ir
)1−pI

∂
∂uq

(
gI (uuuÎ )

pI −
ℓI−1

∑
j=1

fI , j(uuuI , j)
pI

)

=
pI ,ir

pI
GI ,ir (uuuÎ ,ir

) ·





∂
∂uq

gI (uuuÎ )
pI if q∈ I

− ∂
∂uq

fI , j(uuuI , j)
pI if q∈ I , j
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Similarly

∂
∂uq

fI ,ir (uuuI ,ir )
pI = pI fI ,ir (uuuI ,ir )

pI−1 ∂
∂uq

fI ,ir (uuuI ,ir )

= pI fI ,ir (uuuI ,ir )
pI−1 ∂

∂uq

(
ℓI ,ir

∑
k=1

fI ,ir ,k(uuuI ,ir ,k)
pI ,ir

) 1
pI ,ir

=
pI

pI ,ir
fI ,ir (uuuI ,ir )

pI−1 fI ,ir (uuuI ,ir )
1−pI ,ir

∂
∂uq

fI ,ir ,s(uuuI ,ir ,s)
pI ,ir

=
pI

pI ,ir
FI ,ir (uuuI ,ir )

∂
∂uq

fI ,ir ,s(uuuI ,ir ,s)
pI ,ir

for k∈ I , ir ,s.

The next lemma states the form of the whole derivative∂un
∂uq

in terms of theGI (uuuÎ )- andFI (uuuI )-terms.

Lemma 13 Let |uq|= vℓ1,...,ℓm,i1,...,it , |un|= vℓ1,...,ℓd with m< d. The derivative of un w.r.t. uq is given
by

∂
∂uq

un =−Gℓ1,...,ℓd(uuu ̂ℓ1,...,ℓd
) · ... ·Gℓ1,...,ℓm+1(uuu ̂ℓ1,...,ℓm+1

)

×Fℓ1,...,ℓm,i1(uuuℓ1,...,ℓm,i1) ·Fℓ1,...,ℓm,i1,...,it−1(uuuℓ1,...,ℓm,i1,...,it−1) ·∆q|uq|
pℓ1,...,ℓm,i1,...,it−1−1

with ∆q = sgnuq and|uq|
p = (∆quq)

p. In particular

uq
∂

∂uq
un =−Gℓ1,...,ℓd(uuu ̂ℓ1,...,ℓd

) · ... ·Gℓ1,...,ℓm+1(uuu ̂ℓ1,...,ℓm+1
)

×Fℓ1,...,ℓm,i1(uuu1) ·Fℓ1,...,ℓm,i1,...,it−1(uuuℓ1,...,ℓm,i1) · |uq|
pℓ1,...,ℓm,i1,...,it−1 .

Proof Successive application of Lemma (12).

Proof [Proposition 3] Before we begin with the proof, note thatFI (uuuI ) andGI (uuuÎ ) fulfill following
equalities

GI ,im(uuuÎ ,im
)−1gI ,im(uuuÎ ,im

)pI ,im = gI ,im(uuuÎ ,im
)pI

= gI (uuuÎ )
pI −

ℓI−1

∑
k=1

FI ,k(uuuI ,k) fI ,k(uuuI ,k)
pI ,k (13)

and

fI ,im(uuuI ,im)
pI ,im =

ℓI ,im

∑
k=1

FI ,im,k(uuuI ,im,k) fI ,im,k(uuuI ,im,k)
pI ,im,k. (14)

Now let L = ℓ1, ..., ℓd−1 be the multi-index of the parent ofun. We compute 1
rn−1 |detJ | and

obtain the result by solving for|detJ |. As shown in Lemma (2) 1
rn−1 |detJ | has the form

1
rn−1 |detJ | = −

n−1

∑
k=1

∂un

∂uk
·uk+un.
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By definitionun = gL,ℓd(uuuL̂,ℓd
) = gL,ℓd(uuuL̂,ℓd

)pL,ℓd . Now, assume thatum, ...,un−1 are children ofL,
that is,uk = vL,I ,it for someI , it = i1, ..., it andm≤ k< n. Remember, that by Lemma (13) the terms
uq

∂
∂uq

un for m≤ q< n have the form

uq
∂

∂uq
un =−GL,ℓd(uuuL̂,ℓd

) ·FL,i1(uuuL,i1) · ... ·FL,I (uuuL,I ) · |uq|
pℓ1,...,ℓd−1,i1,...,it−1 .

Using Equation (13), we can expand the determinant as follows

−
n−1

∑
k=1

∂un

∂uk
·uk+gL,ℓd(uuuL̂,ℓd

)pL,ℓd

=−
m−1

∑
k=1

∂un

∂uk
·uk−

n−1

∑
k=m

∂un

∂uk
·uk+gL,ℓd(uuuL̂,ℓd

)pL,ℓd

=−
m−1

∑
k=1

∂un

∂uk
·uk

+GL,ℓd(uuuL̂,ℓd
)

(
−

n−1

∑
k=m

GL,ℓd(uuuL̂,ℓd
)−1∂un

∂uk
·uk+GL,ℓd(uuuL̂,ℓd

)−1gL,ℓd(uuuL̂,ℓd
)pL,ℓd

)

=−
m−1

∑
k=1

∂un

∂uk
·uk

+GL,ℓd(uuuL̂,ℓd
)

(
−

n−1

∑
k=m

GL,ℓd(uuuL̂,ℓd
)−1∂un

∂uk
·uk+gL(uuuL̂)

pL−
ℓd−1

∑
k=1

FL,k(uuuL,k) fL,k(uuuL,k)
pL,k

)
.

Note that all termsGL,ℓd(uuuL̂,ℓd
)−1 ∂un

∂uk
·uk for m≤ k< n now have the form

GL,ℓd(uuuL̂,ℓd
)−1uk

∂
∂uk

un =−FL,i1(uuuL,i1) · ... ·FL,I (uuuL,I ) · |uq|
pℓ1,...,ℓd−1,i1,...,it−1

since we constructed them to be neighbors ofun. However, with Equation (14), we can fur-
ther expand the sum∑ℓd−1

k=1 FL,k(uuuL,k) fL,k(uuuL,k)
pL,k down to the leavesum, ...,un−1. When doing so

we end up with the same factorsFL,i1(uuuL,i1) · ... ·FL,I (uuuL,I ) · |uq|
pℓ1,...,ℓd−1,i1,...,it−1 as in the derivatives

GL,ℓd(uuuL̂,ℓd
)−1uq

∂
∂uq

un. This means exactly that

−
n−1

∑
k=m

GL,ℓd(uuuL̂,ℓd
)−1∂un

∂uk
·uk =

ℓd−1

∑
k=1

FL,k(uuuL,k) fL,k(uuuL,k)
pL,k
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and, therefore,

−
m−1

∑
k=1

∂un

∂uk
·uk

+GL,ℓd(uuuL̂,ℓd
)

(
−

n−1

∑
k=m

GL,ℓd(uuuL̂,ℓd
)−1∂un

∂uk
·uk+gL(uuuL̂)

pL−
ℓd−1

∑
k=1

FL,k(uuuL,k) fL,k(uuuL,k)
pL,k

)

=−
m−1

∑
k=1

∂un

∂uk
·uk

+GL,ℓd(uuuL̂,ℓd
)

(
ℓd−1

∑
k=1

FL,k(uuuL,k) fL,k(uuuL,k)
pL,k +gL(uuuL̂)

pL−
ℓd−1

∑
k=1

FL,k(uuuL,k) fL,k(uuuL,k)
pL,k

)

=−
m−1

∑
k=1

∂un

∂uk
·uk+GL,ℓd(uuuL̂,ℓd

)gL(uuuL̂)
pL .

By factoring outGL,ℓd(uuuL̂,ℓd
) from the equation, the terms∂un

∂uk
·uk loose theGL,ℓd in front and

we get basically the same equation as before, only that the new leaf (the new“un”) is gL(uuuL̂)
pL and

we got rid of all the children ofL. By repeating that procedure up to the root node, we successively
factor out allGL′(uuuL̂′) for L′ ∈ L until all terms of the sum vanish and we are only left withv/0 = 1.
Therefore, the determinant is

1
rn−1 |detJ |= ∏

L∈L

GL(uuuL̂)

which completes the proof.

Appendix B. Volume and Surface of theLp-Nested Unit Sphere

Proof [Proposition 4] We obtain the volume by computing the integral
∫

f (xxx)≤Rdxxx. Differentiation
with respect toRyields the surface area. For symmetry reasons we can compute the volume only on
the positive quadrantRn

+ and multiply the result with 2n later to obtain the full volume and surface
area. The strategy for computing the volume is as follows. We start with inner nodesI that are
parents of leaves only. The valuevI of such a node is simply theLpI norm of its children. Therefore,
we can convert the integral over the children ofI with the transformation of Gupta and Song (1997).
This maps the leavesvvvI ,1:ℓI into vI and “angular” variables̃uuu. Since integral borders of the original
integral depend only on the value ofvI and not oñuuu, we can separate the variablesũuu from the radial
variablesvI and integrate the variablesũuu separately. The integration overũuu yields a certain factor,
while the variablevI effectively becomes a new leaf.
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Now supposeI is the parent of leaves only. Without loss of generality let theℓI leaves correspond
to the lastℓI coefficients ofxxx. Letxxx∈Rn

+. Carrying out the first transformation and integration yields

∫
f (xxx)≤R

dxxx=
∫

f (xxx1:n−ℓI ,vI )≤R

∫
ũuu∈V

ℓI−1
+

vℓI−1
I

(
1−

ℓI−1

∑
i=1

ũpI
i

) 1−pI
pI

dvI dũuudxxx1:n−ℓI

=
∫

f (xxx1:n−ℓI ,vI )≤R
vnI−1

I dvI dxxx1:n−ℓI ×
∫

ũuu∈V
ℓI−1
+

(
1−

ℓI−1

∑
i=1

ũpI
i

) nI ,ℓI
−pI

pI

dũuu.

whereV+ denotes the intersection of the positive quadrant and theLpI -norm unit ball. For solving
the second integral we make the pointwise transformationsi = ũpI

i and obtain

∫
ũuu∈V

ℓI−1
+

(
1−

ℓI−1

∑
i=1

ũpI
i

) nI ,ℓI
−pI

pI

dũuu=
1

pℓI−1
I

∫
∑si≤1

(
1−

ℓI−1

∑
i=1

si

) nI ,ℓI
pI
−1

ℓI−1

∏
i=1

s
1
pI
−1

i dsssℓI−1

=
1

pℓI−1
I

ℓI−1

∏
k=1

B

[
∑k

i=1nI ,k

pI
,
nI ,k+1

pI

]

=
1

pℓI−1
I

ℓI−1

∏
k=1

B

[
k
pI
,

1
pI

]

by using the fact that the transformed integral has the form of an unnormalized Dirichlet distribution
and, therefore, the value of the integral must equal its normalization constant.

Now, we solve the integral

∫
f (xxx1:n−ℓI ,vI )≤R

vnI−1
I dvI dxxx1:n−ℓI . (15)

We carry this out in exactly the same manner as we solved the previous integral.We need only
to make sure that we only contract nodes that have only leaves as children(remember that radii of
contracted nodes become leaves) and we need to find a formula describinghow the factorsvnI−1

I
propagate through the tree.

For the latter, we first state the formula and then prove it via induction. For notational conve-
nience letJ denote the set of multi-indices corresponding to the contracted leaves,xxxĴ the remaining
coefficients ofxxx andvvvJ the vector of leaves resulting from contraction. The integral which is left to
solve after integrating over allũuu is given by (remember thatnJ denotes real leaves, that is, the ones
corresponding to coefficients ofxxx):

∫
f (xxx

Ĵ
,vvvJ )≤R

∏
J∈J

vnJ−1
J dvvvJdxxxĴ .

We already proved the first induction step by computing Equation (15). Forcomputing the general
induction step supposeI is an inner node whose children are leaves or contracted leaves. LetJ ′

be the set of contracted leaves underI andK = J \J ′. Transforming the children ofI into radial
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coordinates by Gupta and Song (1997) yields

∫
f (xxx

Ĵ
,vvvJ )≤R

∏
J∈J

vnJ−1
J dvvvJdxxxĴ =

∫
f (xxx

Ĵ
,vvvJ )≤R

(
∏

K∈K

vnK−1
K

)
·

(
∏

J′∈J ′
v

nJ′−1
J′

)
dvvvJdxxxĴ

=
∫

f (xxx
K̂
,vvvK ,vI )≤R

∫
ũuuℓI−1∈V

ℓI−1
+



(

1−
ℓI−1

∑
i=1

ũpI
i

) 1−pI
pI

vℓI−1
I


 ·
(

∏
K∈K

vnK−1
K

)

×





vI

(
1−

ℓI−1

∑
i=1

ũpI
i

) 1
pI




nℓI−1
ℓI−1

∏
k=1

(vI ũk)
nk−1


dxxx

K̂
dvvvK dvI dũuuℓI−1

=
∫

f (xxx
K̂
,vvvK ,vI )≤R

∫
ũuuℓI−1∈V

ℓI−1
+

(
∏

K∈K

vnK−1
K

)

×


v

ℓI−1+∑ℓI
i=1(ni−1)

I

(
1−

ℓI−1

∑
i=1

ũpI
i

) nℓI
−pI
pI ℓI−1

∏
k=1

ũnk−1
k


dxxx

K̂
dvvvK dvI dũuuℓI−1

=
∫

f (xxx
K̂
,vvvK ,vI )≤R

(
∏

K∈K

vnK−1
K

)
vnI−1

I dxxx
K̂

dvvvK dvI

×
∫

ũuuℓI−1∈V
ℓI−1
+

(
1−

ℓI−1

∑
i=1

ũpI
i

) nℓI
−pI
pI ℓI−1

∏
k=1

ũnk−1
k dũuuℓI−1.

Again, by transforming it into a Dirichlet distribution, the latter integral has the solution

∫
ũuuℓI−1∈V

ℓI−1
+

(
1−

ℓI−1

∑
i=1

ũpI
i

) nℓI
−pI
pI ℓI−1

∏
k=1

ũnk−1
k dũuuℓI−1 =

ℓI−1

∏
k=1

B

[
∑k

i=1nI ,k

pI
,
nI ,k+1

pI

]

while the remaining former integral has the form

∫
f (xxx

K̂
,vvvK ,vI )≤R

(
∏

K∈K

vnK−1
K

)
vnI−1

I dxxx
K̂

dvvvK dvI =
∫

f (xxx
Ĵ
,vvvJ )≤R

∏
J∈J

vnJ−1
J dvvvJdxxxĴ

as claimed.
By carrying out the integration up to the root node, the remaining integral becomes

∫
v/0≤R

vn−1
/0 dv/0 =

∫ R

0
vn−1

/0 dv/0 =
Rn

n
.

Collecting the factors from integration over theũuu proves the Equations (5) and (7). UsingB[a,b] =
Γ[a]Γ[b]
Γ[a+b] yields Equations (6) and (8).
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Appendix C. Layer Marginals

Proof [Proposition 7]

ρ(xxx) =
φ( f (xxx))
S f ( f (xxx))

=
φ( f (xxx1:n−ℓI ,vI , ũuuℓI−1,∆n))

S f ( f (xxx))
·vℓI−1

I

(
1−

ℓI−1

∑
i=1

|ũi |
pI

) 1−pI
pI

where∆n = sign(xn). Note thatf is invariant to the actual value of∆n. However, when integrating
it out, it yields a factor of 2. Integrating outũuuℓI−1 and∆n now yields

ρ(xxx1:n−ℓI ,vI ) =
φ( f (xxx1:n−ℓI ,vI ))

S f ( f (xxx))
·vℓI−1

I

2ℓI ΓℓI

[
1
pI

]

pℓI−1
I Γ

[
ℓI
pI

]

=
φ( f (xxx1:n−ℓI ,vI ))

S f ( f (xxx1:n−ℓI ,vI ))
·vℓI−1

I

Now, we can go on and integrate out more subtrees. For that purpose, let xxxĴ denote the remaining
coefficients ofxxx, vvvJ the vector of leaves resulting from the kind of contraction just shown forvI , and
J the set of multi-indices corresponding to the “new leaves”, that is, nodevI after contraction. We
obtain the following equation

ρ(xxxĴ ,vvvJ ) =
φ( f (xxxĴ ,vvvJ ))

Sf ( f (xxxĴ ,vvvJ ))
∏
J∈J

vnJ−1
J .

wherenJ denotes the number of leaves in the subtree under the nodeJ. The calculations for the
proof are basically the same as the one for proposition (4).

Appendix D. Factorial Lp-Nested Distributions

Proof [Proposition 9] Since the singlexi are independent,f1(xxx1), ..., fℓ /0(xxxℓ /0) and, therefore,v1, ...,vℓ /0

must be independent as well (xxxi are the elements ofxxx in the subtree below theith child of the root
node). Using Corollary 8 we can write the density ofv1, ...,vℓ /0 as (the function nameg is unrelated
to the usage of the functiong above)

ρ(vvv1:ℓ /0) =
ℓ /0

∏
i=1

hi(vi) = g(‖vvv1:ℓ /0‖p/0)
ℓ /0

∏
i=1

vni−1
i

with

g(‖vvv1:ℓ /0‖p/0) =
pℓ /0−1

/0 Γ
[

n
p/0

]

‖vvv1:ℓ /0‖
n−1
p/0 2m∏ℓ /0

k=1 Γ
[

nk
p/0

]φ(‖vvv1:ℓ /0‖p/0)
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Since the integral overg is finite, it follows from Sinz et al. (2009a) thatghas the formg(‖vvv1:ℓ /0‖p/0)=
exp(a/0‖vvv1:ℓ /0‖

p/0
p/0 +b/0) for appropriate constantsa/0 andb/0. Therefore, the marginals have the form

hi(vi) = exp(a/0vp/0
i +c/0)v

ni−1
i . (16)

On the other hand, the particular form ofg implies that the radial density has the formφ( f (xxx)) ∝
f (xxx)(n−1)exp(a/0 f (xxx)p/0 +b/0)

p/0 . In particular, this implies that the root node’s childrenfi(xxxi) (i =
1, ..., ℓ /0) are independent andLp-nested symmetric again. With the same argument as above, it fol-

lows that their childrenvvvi,1:ℓi follow the distributionρ(vi,1, ...,vi,ℓi)= exp(ai‖vvvi,1:ℓi‖
pi
pi +bi)∏ℓi

j=1v
ni, j−1
i, j .

Transforming that distribution toLp-spherically symmetric polar coordinatesvi = ‖vvvi,1:ℓi‖pi and
ũuu= vvvi,1:ℓi−1/‖vvvi,1:ℓi‖pi as in Gupta and Song (1997), we obtain the form

ρ(vi , ũuu) = exp(aiv
pi
i +bi)v

ℓi−1
i

(
1−

ℓi−1

∑
j=1

|ũ j |
pi

) 1−pi
pi


vi

(
1−

ℓi−1

∑
j=1

|ũ j |
pi

) 1
pi




ni,ℓi−1
ℓi−1

∏
j=1

(ũ jvi)
ni, j−1

= exp(aiv
pi
i +bi)v

ni−1
i

(
1−

ℓi−1

∑
j=1

|ũ j |
pi

) ni,ℓi
−pi

pi ℓi−1

∏
j=1

ũ
ni, j−1
j ,

where the second equation follows the same calculations as in the proof of Proposition 4. After in-
tegrating out̃uuu, assuming that thexi are statistically independent, we obtain the density ofvi which
is equal to (16) if and only ifpi = p/0. However, if p/0 and pi are equal, the hierarchy of theLp-
nested function shrinks by one layer sincepi andp/0 cancel themselves. Repeated application of the
above argument collapses the completeLp-nested tree until one effectively obtains anLp-spherical
function. Since the only factorialLp-spherically symmetric distribution is thep-generalized Normal
(Sinz et al., 2009a) the claim follows.

Appendix E. Determinant of the Jacobian for NRF

Proof [Lemma 11] The proof is a generalization of the proof of Lyu and Simoncelli (2009). Due
to the chain rule the Jacobian of the entire transformation is the multiplication of the Jacobians
for each single step, that is, the rescaling of a subset of the dimensions for one single inner node.
The Jacobian for the other dimensions is simply the identity matrix. Therefore, the determinant of
the Jacobian for each single step is the determinant for the radial transformation on the respective
dimensions. We show how to compute the determinant for a single step.

Assume that we reached a particular nodeI in Algorithm 2. The leaves, which have been
rescaled by the preceding steps, are calledttt I . Let ξξξI =

gI ( fI (ttt I ))
fI (ttt I ))

· ttt I with gI (r) = (F −1
⊥⊥ ◦Fs)(r). The

general form of a single Jacobian is

∂ξξξI

∂ttt I
= ttt I ·

∂
∂ttt I

(
gI ( fI (ttt I ))

fI (ttt I )

)
+

gI ( fI (ttt I ))

fI (ttt I )
InI ,

where

∂
∂ttt I

(
gI ( fI (ttt I ))

fI (ttt I )

)
=

(
g′I ( fI (ttt I ))

fI (ttt I )
−

gI ( fI (ttt I ))

fI (ttt I )2

)
∂

∂ttt I
fI (ttt I ).
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Let yi be a leave in the subtree underI and letI ,J1, ...,Jk be the path of inner nodes fromI to yi ,
then

∂
∂yi

fI (ttt I ) = v1−pI
I v

pI−pJ1
J1

· ... ·v
pJk−1−pJk
k |yi |

pJk−1 ·sgnyi .

If we denoter = fI (ttt I ) andζi = v
pI−pJ1
J1

· ... · v
pJk−1−pJk
k |yi |

pJk−1 · sgnyi for the respectiveJk, we
obtain

det

(
ttt I ·

∂
∂ttt I

(
gI ( fI (ttt I ))

fI (ttt I )

)
+

gI ( fI (ttt I ))

fI (ttt I )
InI

)
= det

((
g′I (r)−

gI (r)
r

)
r−pI ttt I ·ζζζ

⊤
+

gI (r)
r

InI

)
.

Now we can use Sylvester’s determinant formula det(In+bttt I ζζζ
⊤
) = det(1+bttt⊤I ζζζ) = 1+bttt⊤I ζζζ

or equivalently

det(aIn+bttt I ζζζ
⊤
) = det

(
a·

(
In+

b
a

ttt I ζζζ
⊤
))

= andet

(
In+

b
a

ttt I ζζζ
⊤
)

= an−1(a+bttt⊤I ζζζ),

as well asttt⊤I ζζζ = fI (ttt I )
pI = r pI to see that

det

((
g′I (r)−

gI (r)
r

)
r−pI ttt I ·ζζζ

⊤
+

gI (r)
r

In

)
=

gI (r)n−1

rn−1 det

((
g′I (r)−

gI (r)
r

)
r−pI ttt⊤I ·ζζζ+

gI (r)
r

)

=
gI (r)n−1

rn−1 det

(
g′I (r)−

gI (r)
r

+
gI (r)

r

)

=
gI (r)n−1

rn−1

d
dr

gI (r).

d
dr gI (r) is readily computed viad

dr gI (r) = d
dr (F

−1
⊥⊥ ◦Fs)(r) =

φs(r)
φ⊥⊥(gI (r))

.
Multiplying the single determinants along with detW for the final step of the chain rule com-

pletes the proof.
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