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1 Department for Neuroethology, University Tübingen, Tübingen, Germany, 2 Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen,
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Abstract

Divisive normalization in primary visual cortex has been linked to adaptation to natural image statistics in accordance to
Barlow’s redundancy reduction hypothesis. Using recent advances in natural image modeling, we show that the previously
studied static model of divisive normalization is rather inefficient in reducing local contrast correlations, but that a simple
temporal contrast adaptation mechanism of the half-saturation constant can substantially increase its efficiency. Our
findings reveal the experimentally observed temporal dynamics of divisive normalization to be critical for redundancy
reduction.
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Introduction

It is a long-standing hypothesis that the computational goal of

the early visual processing stages is to reduce redundancies which

are abundantly present in natural sensory signals [1,2]. Redun-

dancy reduction is a general information theoretic principle that

plays an important role for many possible goals of sensory systems

like maximizing the amount of information between stimulus and

neural response [3], obtaining a probabilistic model of sensory

signals [4], or learning a representation of hidden causes [3,5]. For

a population of neurons, redundancy reduction predicts that

neuronal responses should be made as statistically independent

from each other as possible [2].

Many prominent neural response properties such as receptive

field structure or contrast gain control have been linked to

redundancy reduction on natural images [2]. While an appropri-

ate structure of linear receptive fields can always remove all

redundancies caused by second order correlations, they have only

little effect on the reduction of higher order statistical dependen-

cies [6,7]. However, one of the most prominent contrast gain

control mechanisms—divisive normalization—has been demon-

strated to reduce higher order correlations on natural images and

sound [8–10]. Its central mechanism is a divisive rescaling of a

single neuron’s activity by that of a pool of other neurons [8, see

also Figure 1a].

Recently, radial factorization and radial Gaussianization have been

derived independently by [11] and [12], respectively, based on

Barlow’s redundancy reduction principle [1]. Both mechanisms

share with divisive normalization the two main functional

components, linear filtering and rescaling and have been shown

to be the unique and optimal redundancy reduction mechanism

for this class of transformations under certain symmetry assump-

tions for the data. Radial factorization is optimal for a more

general symmetry class than radial Gaussianization [11,13] and

contains radial Gaussianization as a special case. As a conse-

quence, radial factorization can achieve slightly better redundancy

reduction for natural images than radial Gaussianization but the

advantage is very small.

Here, we compare the redundancy reduction performance of

divisive normalization to that of radial factorization in order to see

to what extent divisive normalization can serve the goal of

redundancy reduction. Our comparison shows that a non-

adapting static divisive normalization is not powerful enough to

capture the contrast dependencies of natural images. Furthermore,

we show that (i) the shape of contrast response curves predicted by

radial factorization is not consistent with that found in physiolog-

ical recordings, and (ii) that for a static divisive normalization

mechanism this inconsistency is a necessary consequence of strong

redundancy reduction. Finally, we demonstrate that a dynamic

adaptation of the half-saturation constant in divisive normalization

may provide a physiologically plausible mechanism that can

achieve close to optimal performance. Our proposed adaptation

mechanism works via horizontal shifts of the contrast response

curve along the log-contrast axis. Such shifts have been observed

in experiments in response to a change of the ambient contrast

level [14].

Results

Measures, Models, Mechanisms
We now briefly introduce divisive normalization, radial

factorization, and the information theoretic measure of redun-

dancy used in this study.

Redundancy reduction and multi-information. We con-

sider a population of sensory neurons that transforms natural

image patches x into a set of neural activities y or z. We always use
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y to denote responses to linear filters, and z for the output of

divisive normalization or radial factorization. The goal of

redundancy reduction is to remove statistical dependencies

between the single coefficients of y~(y1,:::,yn)T or z~(z1,:::,zn)T.

Redundancy is quantified by the information theoretic measure

called multi-information

I ½Y�~DKL r(y)E P
n

i~1
ri(yi)

� �
~
Xn

i~1

H½Yi�{H½Y�, ð1Þ

which measures how much the representation differs from having

independent components. More precisely, the multi-information is

the Kullback-Leibler divergence between the joint distribution and

the product of its marginals or, equivalently, the difference

between the sum of the marginal entropies and the joint entropy.

In case of n~2 this equals the better known mutual information. If

the different entries of Y are independent, then its joint

distribution equals the product of the single marginals or–-

equivalently–-the joint entropy equals the sum of the marginal

entropies. Thus, the multi-information is zero if and only if the

different dimensions of the random vector Y are independent, and

positive otherwise. In summary, the multi-information measures

all kinds of statistical dependencies among the single coefficients of

a random vector. In the Methods Section, we describe how we

estimate the multi-information for the various signals considered

here.

Divisive normalization. From all existing divisive normal-

ization models considered previously in the literature, ours is most

closely related to the one used by Schwartz and Simoncelli [9]. It

consists of two main components: a linear filtering step and a

rescaling step based on the Euclidean norm of the filter responses

yi~wi x, for i~1,:::,n z~
kyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2zEyE2
q : ð2Þ

While the linear filters wi capture the receptive field properties, the

rescaling step captures the nonlinear interactions between the

single neurons. Most divisive normalization models use filters wi

that resemble the receptive fields of complex cells [9,15,16].

Therefore, we use filters obtained from training an Independent

Subspace Analysis (ISA) on a large collection of randomly sampled

image patches [15,16, see also Methods]. ISA can be seen as a

redundancy reduction transform whose outputs are computed by

the complex cell energy model [17,18]. For this study, the

algorithm has the advantage that it not only yields complex cell-

like filter shapes, but also ensures that single filter responses yi are

decorrelated and already optimized for statistical independence.

This ensures that the redundancies removed by divisive normal-

ization and radial factorization are the ones that cannot be

removed by the choice of linear filters [7,19].

Several divisive normalization models exist in the literature.

They differ, for instance, by whether a unit yi is contained in its

own normalization pool, or in the exact form of the rescaling

function gDN (t)~kt=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2zt2
p

also known as Naka-Rushton function.

From the viewpoint of redundancy reduction, the former

distinction between models is irrelevant because the influence of

a single unit on its normalization pool can always be removed by

the elementwise invertible transformation zi.zi=
ffiffiffiffiffiffiffiffiffiffiffiffi
1{z2

i

q
which

does not change the redundancies between the responses [20] (the

multi-information is invariant with respect to elementwise

invertible transformations). Sometimes, a more general form of

the Naka-Rushton function is found in the literature which uses

different types of exponents

yi.
kyi

s2z
P

j

D~yyj D
p

 !1=p
~

kyi

s2zEyEp
p

� �1=p
: ð3Þ

The divisive normalization model considered in this study

(equation (2)) differs from this more general version by the type

of the norm used for rescaling the single responses: Where

equation (3) uses the Lp-norm EyEp~
P

j Dyj Dp
� �1=p

we use the

Euclidean norm. Because radial factorization is defined for the

more general Lp-norm (see Methods), all analyses in this paper

could be carried out for this more general transform. However, we

instead chose to use the Euclidean norm for simplicity and to make

our model more comparable to the ones most commonly used in

redundancy reduction studies of divisive normalization [9,20–22].

Also note that the Naka-Rushton function is often defined as the

pth power of equation (3). However, the form of equation (3) is

more common in redundancy reduction studies in order to

maintain the sign of yi. We mention the consequences of this

choice in the discussion.

Radial factorization. Radial factorization is an optimal

radial rescaling for redundancy reduction. We will now briefly

introduce radial factorization starting from divisive normalization.

For more mathematical details see the Methods Section.

On a population level, the rescaling step of divisive normali-

zation is a nonlinear mapping that changes the Euclidean radius of

the filter response population. This can be seen by decomposing

divisive normalization into two multiplicative terms

z~
kEyEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2zEyE2
q : y

EyE
~gDN EyEð Þ: y

EyE
: ð4Þ

Author Summary

The redundancy reduction hypothesis postulates that
neural representations adapt to sensory input statistics
such that their responses become as statistically indepen-
dent as possible. Based on this hypothesis, many proper-
ties of early visual neurons—like orientation selectivity or
divisive normalization—have been linked to natural image
statistics. Divisive normalization, in particular, models a
widely observed neural response property: The divisive
inhibition of a single neuron by a pool of others. This
mechanism has been shown to reduce the redundancy
among neural responses to typical contrast dependencies
in natural images. Here, we show that the standard model
of divisive normalization achieves substantially less redun-
dancy reduction than a theoretically optimal mechanism
called radial factorization. On the other hand, we find that
radial factorization is inconsistent with existing neuro-
physiological observations. As a solution we suggest a new
physiologically plausible modification of the standard
model which accounts for the dynamics of the visual
input by adapting to local contrasts during fixations. In this
way the dynamic version of the standard model achieves
almost optimal redundancy reduction performance. Our
results imply that the dynamics of natural viewing
conditions are critical for testing the role of divisive
normalization for redundancy reduction.

Contrast Gain Control on Natural Images
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The second term normalizes the response vector y to length one

while the Naka-Rushton function in the first term determines the

new radius. Since the rescaling gDN depends only on the norm, the

new radius does not depend on any specific direction of y.

The redundancy between the coefficients of z is determined by

three factors: The statistics of natural image patches x which—

together with the choice of filters wi—determine the statistics of y,

and the radial transformation gDN . If we allow the radial

transformation to be a general invertible transform g(EyE) on the

Euclidean norm, we can now ask how the different model

components can be chosen in order to minimize the redundancy in z.

A substantial part of the redundancies in natural images are

second order correlations, which can be removed by linear filters

during whitening [6]. Whitening does not completely determine the

filters since the data can always be rotated afterwards and still stay

decorrelated. Higher order decorrelation algorithms like independent

component analysis use this rotational degree of freedom to decrease

higher order dependencies in the filter responses y [3]. However,

there is no set of filters that could remove all statistical

dependencies from natural images [6,7], because whitened natural

images exhibit an approximately spherical but non-Gaussian joint

distribution [7,21,23,24]. Since spherical symmetry is invariant

under rotation and because the only spherically symmetric

factorial distribution is the Gaussian distribution [13,25], the

marginals cannot be independent.

Hence, the remaining dependencies must be removed by

nonlinear mechanisms like an appropriate radial transformation g.

Fortunately, the joint spherically symmetric distribution of the

filter responses y already dictates a unique and optimal way to

choose g: Since a rescaling with g will necessarily result in a

spherically symmetric distribution again, g must be chosen such

that z is jointly Gaussian distributed. Therefore, we need to choose

g such that g(EyE) follows the radial distribution of a Gaussian or,

in other words, a x-distribution. This is a central point for our

study: For a spherically symmetric distribution the univariate

distribution on EyE determines higher order dependencies in the

multi-variate joint distribution of y. This means that if we restrict

ourselves to radial transformations, it is sufficient to look at radial

distributions only. The fact that the Gaussian is the only

spherically symmetric factorial distribution implies that the

coefficients in z can only be statistically independent if EzE follows

radial x-distribution. Radial factorization finds a transformation g

which achieves exactly that by using histogram equalization on the

distribution of EyE [11,12, see also Methods]. All these consider-

ations also hold for Lp-spherically symmetric distributions [11,13].

Note that this does not imply that the neural responses z must

follow a Gaussian distribution if they are to be independent

because the distribution of the single responses zi can always be

altered by applying an elementwise invertible transformation

zi.fi(zi) without changing the redundancy. The above consider-

ations only mean that given the two main model components of

divisive normalization (and the assumption of spherical symmetry),

the best we can do is to choose the wi to be whitening filters and

g(EyE) according to radial factorization.

Radial factorization and divisive normalization are not

equivalent. The goal of this study is to compare the redun-

dancy reduction achieved by divisive normalization and radial

factorization. Apart from all similarities between the two models,

there is a profound mathematical difference showing that the two

mechanisms are not equivalent (as noted by [12]).

Both mechanisms have the form

z~g EyEð Þ: y

EyE
:

However, the radial rescalings of radial factorization and that of

divisive normalization, gRF and gDN , have a different range. Since

the x-distribution is non-zero on all of Rz the range of gRF must

be Rz as well. However, in case of divisive normalization, the

Naka-Rushton function gDN saturates at k. This means that gDN

can never transform a radial distribution into a x-distribution since

values beyond k cannot be reached.

While this implies that the two mechanisms are mathematically

not equivalent, it could still be that they perform similarly on data

if the probability mass of the x-distribution in the range beyond k
is small. Therefore, we choose k to be the 99% quantile of the x-

distribution in all our experiments (see Methods).
Comparison of the redundancy reduction

performance. We compared the amount of redundancy

removed by divisive normalization and radial factorization by

measuring the multi-information in the plain filter responses y and

the normalized responses z for a large collection of natural image

patches (Figure 1b). In both cases the parameters of the radial

transformation were chosen to yield the best possible redundancy

reduction performance (see Methods). While both divisive

normalization and radial factorization remove variance correla-

tions (Figure 1a), the residual amount of dependencies for divisive

normalization is still approximately 34% of the total redundancies

removed by radial factorization (Figure 1a–b). This demonstrates

that divisive normalization is not optimally tailored to the statistics

of natural images.

To understand this in more detail, we derived the distribution

that EyE should have if divisive normalization were the optimal

redundancy reducing mechanism and compared it to the empirical

radial distribution of EyE represented by a large collection of

uniformly sampled patches from natural images. This optimal

distribution for divisive normalization can be derived by trans-

forming a x-distributed random variable with g{1
DN (see Methods).

Since gDN has limited range ½0,k) we actually have to use a x-

distribution which is truncated at k. The parametric form of the

resulting distribution is given in the Methods Section. We refer to

is as Naka-Rushton distribution in the following. The parameters of

the Naka-Ruston distribution are k and s2. Since k is already

determined by fixing the range of gDN to the 99% quantile of the

x-distribution, the remaining free parameter is s2. In the Naka-

Rushton function gDN this parameter is called half-saturation

constant and controls the horizontal position of the contrast

response curve in model neurons.

We fitted s2 via maximum likelihood (see Methods) and found

that even for the best fitting s2 there is a pronounced mismatch

between the Naka-Rushton distribution and the empirical

distribution given by the histogram (Figure 1c). This explains the

insufficient redundancy reduction because the Naka-Rushton

distribution expects most of the responses EyE to fall into a much

narrower range than responses to natural images do in reality. The

Naka-Rushton function gDN would map the red radial density in

Figure 1c perfectly into a truncated x-distribution. However, it

maps a profound part of the true radial distribution of EyE (gray

histogram) close to k, since this part is located to the right of the

mode of the Naka-Rushton distribution where it expects almost no

probability mass. Additionally, the Naka-Rushton distribution

exhibits a small gap of almost zero probability around zero. This

gap, however, also contains a portion of empirical distribution.

This part gets mapped close to zero. To understand why this

leaves significant redundancies, imagine the most extreme case in

which all the probability mass of EyE would either be mapped onto

k or on onto 0. The corresponding distribution on z would consist

of a point mass at zero and a spherical shell at k. Such a

distribution would clearly exhibit strong dependencies.

Contrast Gain Control on Natural Images
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Augmenting divisive normalization by more

parameters. It is clear that the suboptimal redundancy

reduction performance of divisive normalization is due to its

restricted parametric form. Therefore, we explored two options

how to increase its degrees of freedom and thereby its redundancy

reduction performance: the first option endows static divisive

normalization with additional parameters c,d, the second option

allows for a dynamic temporal adaptation of s2.

The simplest way to increase the degrees of freedom in divisive

normalization is to introduce two additional parameters in the

Naka-Rushton function

EzE~gDNE(EyE)~
kEyE

c
2
zdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2zEyEc
p :

These parameters allow for more flexibility in the scale and shape

of the corresponding Naka-Rushton distribution. We label all

models that use this parametrization as extended in the following.

Note that the extended Naka-Rushton function only saturates for

d~0. This means that it could in principle transform EyE into EzE
such that EzE is x-distributed. For d~0 and c~2, the original

Naka-Rushton function is recovered. As before, we derived the

corresponding extended Naka-Rushton distribution by transform-

ing a (truncated) x-distributed random variable with g{1
DNE . We

fitted the resulting distribution to a large collection of EyE, used the

maximum likelihood parameters for extended divisive normaliza-

tion, and measured the redundancy via multi-information in the

resulting normalized responses z.

We found that an extended divisive normalization transform

achieves substantially more redundancy reduction and that the

extended Naka-Rushton distribution on EyE fits the image data

significantly better (Figure 1b–c). However, we also find that the

best extended Naka-Rushton function for redundancy reduction

would yield biologically implausible contrast response curves

which capture the firing rate of a neuron upon stimulation with

gratings of different contrast at the neuron’s preferred spatial

frequency and orientation.

In the divisive normalization and the radial factorization model,

the shape of the contrast response curve is determined by the

Figure 1. Redundancy reduction and radial distributions for different normalization models. A: Divisive normalization model used in this
study: Natural image patches are linearly filtered. These responses are nonlinearly transformed by divisive normalization or radial factorization (see
text). After linear filtering the width of the conditional distribution p(yj Dyi) of two filter responses depends on the value of yi (conditional log-
histograms as contour plots). This demonstrates the presence of variance correlations. These dependencies are decreased by divisive normalization
and radial factorization. B: Redundancy measured by multi-information after divisive normalization, extended divisive normalization, and radial
factorization: divisive normalization leaves a substantial amount of residual redundancy (error bars show standard deviation over different datasets).
C: Distributions on the norm of the filter responses EyE for which divisive normalization (red) and extended divisive normalization (blue) are the
optimal redundancy reducing mechanisms. The radial transformation of radial factorization and its corresponding distribution (mixture of five c-
distributions) is shown in black. While radial factorization (inset, black curve) and extended divisive normalization (inset, blue curve) achieve good
redundancy reduction, they lead to physiologically implausibly shaped contrast response curves which are mainly determined by their respective
radial transformations g(EyE) shown in the inset. The radial transformation of divisive normalization is shown for comparison (inset, red curve).
doi:10.1371/journal.pcbi.1002889.g001

Contrast Gain Control on Natural Images
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shape of the radial rescaling function (Figure 1c, inset) [8]. In

contrast to the normal Naka-Rushton function (Figure 1c, inset,

red curve), the extended version (Figure 1c, inset, blue curve)

exhibits a physiologically unreasonable shape: it starts at a non-

zero value, increases without saturation, and does not resemble

any sigmoidal shape at all. The non-zero level for low contrasts is a

direct consequence of the optimization for redundancy reduction:

redundancy reduction implies that the target radial distribution is

a (truncated) x-distribution which has only very little probability

mass close to zero. Therefore, the radial rescaling function must

map the substantial portion of low contrast values in the empirical

distribution upwards in order to match the x-distribution. This

results in the immediate non-zero onset. This is a pronounced

mismatch to the typical contrast response curves measured in

cortical neurons (see Figure 2 in [14]). In fact, the addition of more

parameters merely leads to a contrast response curve which is

more similar to radial factorization (Figure 1, inset, black) which

does not have a plausible shape, too. Therefore, we dismiss the

option of adding more parameters to the Naka-Rushton function

and turn to the option in which s2 is allowed to dynamically adapt

to the ambient contrast level.

Dynamic divisive normalization. Previous studies found

that single neurons adapt to the ambient contrast level via

horizontal shifts of their contrast response curve along the log-

contrast axis [8,14]. In the divisive normalization model, this shift

is realized by changes in the half-saturation constant s2. This

means, however, that there is not a single static divisive

normalization mechanism, but a whole continuum whose elements

differ by the value of s2 (Figure 2). This is equivalent to a

continuum of Naka-Rushton distributions which can be adapted

to the ambient contrast level by changing the value of s2. Since

this kind of adaptation increases the degrees of freedom, it could

also lead to a better redundancy reduction performance.

In order to investigate adaptation to the local contrast in a

meaningful way, we used a simple model of saccades and micro-

saccades on natural images to sample fixation locations and their

corresponding filter responses y (see Methods). Previous studies on

redundancy reduction with divisive normalization [9,11,12]

ignored both the structure imposed by fixations between saccades

in natural viewing conditions, and the adaptation of neural

contrast response curves to the ambient contrast level via the

adaptation of s2 [14]. Figure 2 shows an example of simulated eye

movements on a natural image from the van Hateren database.

For each sample location, we computed the corresponding values

of EyE and fitted a Naka-Rushton distribution to it. The right hand

side show the resulting Naka-Rushton distributions. One can see

that the mode of the distribution shifts with the location of the

data, which itself depends on the ambient contrast of the fixation

location.

A dynamically adapting s2 predicts that the distribution of EyE
across time should be well fit by a mixture of Naka-Rushton

distributions. Let r~EyE (we use r to emphasize that the radial

distribution is a univariate density and not a multivariate density

on y), then averaged over all time points t, the distribution of r is

given by

%(r)~

ð
n(rDst)r(st)dst, ð5Þ

where n(rDst) denotes a single Naka-Rushton distribution at a

specific point in time.

We fitted such a mixture distribution to samples EyE from

simulated eye movements (see Methods). Figure 3a shows that the

mixture of Naka-Rushton distributions fits the empirical data very

well, thus confirming the possibility that a dynamic divisive

normalization mechanism may be used to achieve optimal

redundancy reduction.

The next step is to find an explicit dynamic adaptation

mechanism that can achieve optimal redundancy reduction. To

this end, we sought for a way to adapt s2 such that the

redundancies between the output responses z were small. Our

temporally adapting mechanism chooses the current s2 based on

the recent stimulation history by using correlations between the

contrast values at consecutive time steps. We estimated s2 for the

present set of filter responses yt from the immediately preceding

responses yt{1 by sampling s2 from a c-distribution whose

Figure 2. Simulated eye movements and adapted contrast distributions. A: Simulated eye movements on a image from the van Hateren
database [31]. Local microsaccades are simulated with Brownian motion with a standard deviation of 5px. In this example, 8|8 patches are extracted
around the fixation location and whitened. B: Values of EyE for the extracted patches plotted along the x-axis. Vertical offset was manually
introduced for visibility. Colors match the ones in A. The different curves are the maximum likelihood Naka-Rushton distributions estimated from the
data points of the same color.
doi:10.1371/journal.pcbi.1002889.g002

Contrast Gain Control on Natural Images
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parameters were determined by the mean and the variance of the

posterior %(st{1DEyt{1E) which was derived from the mixture

distribution above (see Methods). We found that this temporal

adaptation mechanism significantly decreased the amount of

residual redundancies to about 1:3% (Figure 3B). Note that the

proposed mechanism is a simple heuristic that does not commit to

a particular biophysical implementation of the adaptation, but it

demonstrates that there is at least one mechanism that can

perform well under realistic conditions a neural system would face.

Looking at the joint dynamics of rt and its s (Figure 4) we find

them to be strongly and positively correlated. Therefore, a higher

value of rt is accompanied by a higher value of s. This is

analogous to the adaptation of neural contrast response curves

observed in vivo where a higher contrast (higher EyE) shifts the

contrast response curve to the right (higher s2), and vice versa

[14].

In order to demonstrate that improved redundancy reduction is

a true adaptation mechanism which relies on correlations between

temporally subsequent sample, we need to preclude the possibility

that s2 can be sampled independently (i.e. context independent).

For strong redundancy reduction, the normalized responses EzE
should follow a (possibly truncated) x-distribution (see Methods).

The history-independent choice of s2 predicts that this truncated

x-distribution should be expressible as a mixture of distributions

that result from transforming random variables, that follow a

mixture of Naka-Rushton distributions from Figure 3C, with

Naka-Rushton functions for different values of s2 (see Methods for

the derivation). We transformed the input distribution with Naka-

Rushton functions that differed in the value of s2 (Figure 3C,

colored lines). Different colors in Figure 3C refer to different

values of s2. If s2 was history-independent, a positively weighted

average of the colored distributions should be able to yield a

truncated x-distribution (Figure 3C, dashed line). It is obvious that

this is not possible. Every component will either add a tail to the

left of the x-distribution or a peak to the right of it. Since

distributions can only be added with non-negative weight in a

mixture, there is no way that one distribution can make up for a

tail or peak introduced by another. Therefore, s2 cannot be

chosen independently of the preceding stimulation, but critically

relies on exploiting the temporal correlation structure in the input.

Discussion

In this study we have demonstrated that a static divisive

normalization mechanism is not powerful enough to capture the

contrast dependencies of natural images leading to a suboptimal

Figure 3. Radial distribution and redundancy reduction achieved by the dynamically adapting model. A: Histogram of EyE for natural
image patches sampled with simulated eye movements: The distribution predicted by the dynamically adapting model closely matches the empirical
distribution. B: Same as in Fig. 1B but for simulated eye movement data. The dynamically adapting s2 achieves an almost optimal redundancy
reduction performance. C: Each colored line shows the distribution of a random variable from 3A transformed with a Naka-Rushton function.
Different colors correspond to different values of s. The dashed curve corresponds to a truncated x-distribution. A mixture of the colored
distributions cannot resemble the truncated x-distribution since there will either be peaks on the left or the right of the dashed distribution that
cannot be canceled by other mixture components.
doi:10.1371/journal.pcbi.1002889.g003

Contrast Gain Control on Natural Images
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redundancy reduction performance. Static divisive normalization

could only exhibit close to optimal performance if the contrast

distribution of the input data would be similar to a Naka-Rushton

distribution that we derived in this paper. For the best fitting

Naka-Rushton distribution, however, the interval containing most

of the probability mass is too narrow and too close to zero

compared to the contrast distribution empirically found for natural

image patches. A divisive normalization mechanism that uses the

Lp-norm as in equation (3) instead of the Euclidean norm would

suffer from the same problem because the Naka-Rushton

distribution for Lp-norms other than p~2 would have similar

properties. However, the good performance of extended divisive

normalization demonstrates that it is not necessary to model the

contrast distribution perfectly everywhere but that it would be

sufficient to match the range where most natural contrasts appear

(Figure 1C).

Not every mapping on natural contrasts that achieves strong

redundancy reduction is also physiologically plausible: We

showed that the extended static mechanism yields physiologically

implausible contrast response curves. Extending the static

mechanism of divisive normalization for better redundancy

reduction simply makes it more similar to the optimal mechanism

and, therefore, yields implausible tuning curves as well. We thus

suggested to consider temporal properties of divisive normaliza-

tion and devised a model that can resolve this conflict by

temporally adapting the half-saturation constant s2 using

temporal correlations between consecutive data points caused

by fixations.

Another point concerning physiological plausibility is the

relationship between divisive normalization models used to explain

neurophysiological observations, and those used in redundancy

reduction studies like ours. One very common neurophysiological

model was introduced by Heeger [8] which uses half-squared

instead of linear single responses:

yi~wi x, ~yyi~tyis, ~zz2
i ~

k~yy2
i

s2z
P

j

~yy2
j

: ð6Þ

In order to represent each possible image patch this model would

need two neurons per filter: one for the positive part and one for

the negative part ~yyi,+~t+wT
i xs. Of course, these two units

would be strongly anti-correlated since only one can be nonzero at

a given point in time. Therefore, taking a redundancy reduction

view requires considering the positive and the negative part. For

this reason it is reasonable to use yi~~yyi,z{~yyi,{ as the most basic

unit and define the normalization as in equation (2). Since yi and

f~yyi,z,~yyi,{g are just two different representations of the same

information, the multi-information between y1,:::,yn is the same as

the multi-information between different tuples

f~yy1,z,~yy1,{g,:::,f~yyn,z,~yyn,{g. Apart from this change of viewpoint,

the two models are equivalent, because the normalized half-

Figure 4. Dynamics of the adaptive s. The scatter plot shows the values of rt plotted against the s used to transform rt in the dynamic divisive
normalization model. The two values are clearly correlated. This indicates that the shift of the contrast response curve, which is controlled by s, tracks
the ambient contrast level, which is proportional to rt. Single elements in the plot are colored according to the quantile the value of Drt{rt{1D=rt{1

falls in. When the ambient contrast level changes abruptly (e.g. when a saccade is made), this value is large. If the ambient contrast level is relatively
stable (e.g. during fixation), this value is small. In those situations (blue dots), s and rt exhibit the strongest proportionality.
doi:10.1371/journal.pcbi.1002889.g004
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squared response of equation (6) can be obtained by half-squaring

the normalized response of equation (2). Therefore, a model

equivalent to the one in equation (6) can be obtained by using the

model of equation (2) and representing its responses z by twice as

many half-squared coefficients afterwards.

Previous work on the role of contrast gain control for efficient

coding has either focused on the temporal domain [26,27], or on

its role in the spatial domain as a redundancy reduction

mechanism for contrast correlations in natural images [9,11,12].

Our results emphasize the importance of combining both

approaches by showing that the temporal properties of the

contrast gain control mechanism can have a critical effect on the

redundancies that originate from the spatial contrast correlations

in natural images. Our analysis does not commit to a certain

physiological implementation or biophysical constraints, but it

demonstrates that the statistics of natural images require more

degrees of freedom for redundancy reduction in a population

response than a classical static divisive normalization model can

offer. Our heuristic mechanism demonstrates that strong redun-

dancy reduction is possible with an adaptation mechanism that

faces realistic conditions, i.e. has only access to stimuli encountered

in the past.

As we showed above, biologically plausible shapes of the

contrast response curve and strong redundancy reduction cannot

be easily brought together in a single model. Our dynamical model

offers a possible solution to this problem. To what extent this

model reflects the physiological reality, however, still needs to be

tested experimentally.

The first aspect to test is whether the adaptation of the half-

saturation constant reflects the temporal structure imprinted by

saccades and fixations as predicted by our study. Previous work

has measured adaptation timescales for s2 [14,28]. However, these

measurements are carried out in anesthetized animals and cannot

account for eye movements. Since our adaptation mechanism

mainly uses the fact that contrasts at a particular fixation location

are very similar it predicts that that adaptive changes of s2 should

be seen from one fixation location to another when measured

under natural viewing conditions.

The mechanism we proposed is only one possible candidate for

a dynamic contrast gain control mechanism that can achieve

strong redundancy reduction. We conclude the paper with

defining a measure that can be used to distinguish contrast gain

control mechanisms that are likely to achieve strong redundancy

reduction from those that do not. As discussed above, a necessary

condition for strong redundancy reduction is that the the location

and the width of the distribution of EyE implied by a model must

match the distribution of unnormalized responses EyE deter-

mined by the statistics of natural images. In order to measure the

location and the width of the distributions in a way that does not

depend on a particular scaling of the data, we plotted the median

against the width of the 10%–90%–percentile interval (Figure 5).

For the empirical distributions generated by the statistics of the

image data we always found a ratio greater than 1:5. We also

included a dataset from real human eye movements by Kienzle et

al. to ensure the generality of this finding [29] as real fixations

could introduce a change in the statistics due to the fact that real

observers tend to look at image regions with higher contrasts

[30]. All models that yield strong redundancy reduction also

exhibit a ratio greater than 1:5. Thus, the ratio of the median to

the width of the contrast distribution is a simple signature that

can be used to check whether an adaptation mechanism is

potentially powerful enough for near-optimal redundancy

reduction.

Methods

The code and the data are available online under http://www.

bethgelab.org/code/sinz2012.

Data
van Hateren data. For the static experiments, we used

randomly sampled 17|17 patches from the van Hateren database

[31]. For all experiments we used the logarithm of the raw light

intensities. We sampled 10 pairs of training and test sets of 500,000
patches which we centered on the pixel mean.

For the simulated eye movements, we also used 4 pairs of

training and test sets. For the sampling procedure, we repeated the

following steps until 500,000 samples were drawn: We first drew

an image randomly from the van Hateren database. For each

image, we simulated ten saccades to random locations in that

image. For each saccade location which was uniformly drawn over

the entire image, we determined the number m of patches to be

sampled from around that location by m~qn:tr where n~50Hz
was the assumed sampling frequency and t was a sample from an

exponential distribution with average fixation time 0:2s (i.e.

hmi~10). The actual locations of the patches were determined by

Brownian motion starting at the saccade location and then

propagating with a diffusion constant of D~(30px)2=sec. This

means that each patch location was drawn relative to the previous

one based on an isotropic Gaussian centered at the current

location with a standard deviation of s=
ffiffiffi
n
p

&4:25px.
Kienzle data. The van Hateren database is a standard

dataset for static natural image statistics. To make sure that our

results also hold for real fixations, we sampled data from the

images used by Kienzle et al. [29]. We computed the 10% and

90% percentiles, as well as the width of the interval between them,

for both datasets for Figure 5.

We constructed two datasets: One where the patches were

uniformly drawn from the images, and one where we again used

Figure 5. Median vs. width of 10% to 90% percentile interval of
the models shown in Figure 3b. The red line corresponds to a static
s2 for different values of s2 , the blue triangles correspond to the
temporally adapting s2, the orange markers correspond to uniformly
sampled (diamond) and fixational image patches with Brownian motion
micro-saccades (circle) from Kienzle et al. [29], the gray markers to
simulated eye movement datasets from van Hateren image data [31],
and the black marker to the optimal extended divisive normalization
model. All transforms that yield a strong redundancy reduction have
models that exhibit a ratio greater than 1:5 (dashed lines).
doi:10.1371/journal.pcbi.1002889.g005
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Brownian motion with a similar standard deviation around human

fixation spots to simulate human fixational data. We applied the

same preprocessing as for the van Hateren data: centering and

whitening.

Models
Both the divisive normalization model and the optimal radial

factorization consist of two steps: a linear filtering step and a radial

rescaling step (Table 1). In the following, we describe the different

steps in more detail.
Filters. The receptive fields of our model neurons, i.e. the

linear filters of our models, are given by the rows of a matrix

W~QL{1
2U A. In summary, the filters are obtained by (i)

projecting the data onto the n{1 dimensional subspace that is

insensitive to the DC component in the image patches, (ii)

performing dimensionality reduction and whitening using princi-

pal component analysis, and (iii) training an independent subspace

analysis algorithm (ISA) to obtain Q:

(i) The projection of the data onto the n{1 dimensional

subspace that is insensitive to the DC component is achieved

via the matrix A. This matrix is a fixed matrix for which the

coefficients in each row sum to zero and all rows are

mutually orthogonal. The matrix we used has been obtained

via a QR-decomposition as described in the Methods

Section of [7].

(ii) The dimensionality reduction and whitening is achieved by

L{1=2UT . The matrix U contains the principal components

of Ax such that Ahxx iA ~ULU . As it is common

practice, we kept only the first 72 principal components to

avoid ‘‘noisy’’ high frequency filters. However, our analysis

would also be valid and lead to the same conclusions if we

kept the full set of filters.

(iii) The last matrix Q is constrained to be an orthogonal matrix

because the covariance of whitened data remains white

under orthogonal transformations. This additional degree of

freedom is used by Independent Subspace Analysis (see

below) to optimize the filter shapes for redundancy

reduction beyond removing second-order correlations.

While the matrix Q has a large effect on the particular

filter shapes, the same results would have been obtained with

any type of whitening filter, i.e. for any orthogonal matrix Q,

because they only differ by an orthogonal rotation. Since we

use the Euclidean norm in the divisive normalization model,

the rotation would not change the norm of the filter

responses and therefore all radial distributions would be the

same. The only aspect in our analysis for which the filter

choice would make a (small) difference is the multi-

information of the raw filter responses. When using ICA

filter, the multi-information could be a bit lower. However,

since even for rather drastic changes of filter shapes (within

the class of whitening filters) there is only a small effect on

redundancy reduction [6], the particular choice of filter

shapes does not affect any of our conclusions. The same is

true for any choice of parametric filters as long as the

covariance matrix of the filter responses is proportional to

the identity matrix. Since the second-order correlations

provide the dominant contribution to the multi-information

any substantial deviation from the class of whitening filters is

likely to yield suboptimal results.

The independent subspace analysis (with two-dimensional

subspaces) used to obtain the matrix Q is based on the model by

Hyvärinen [16]:

r(y)~ P
n=2

k~1
rk(y2k,y2kz1Dqk) with y~Wx ð7Þ

where qk denotes the list of free parameters for each rk. More

specifically, qk consists of the value p for the Lp-norm and the

parameters of the radial distribution for each of the Lp-spherically

symmetric distributions. Each single rk was chosen to be a two-

dimensional Lp-spherically symmetric distribution [32]

rk(y2k:2kz1Dqk)~
%k(Ey2k:2kz1EpDqk)

Ey2k:2kz1E
K{1
p S2

p

EyEp~
X2

i~1

Dyi Dp
 !1

p

, pw0

with a radial c-distribution r(rDu,s)~c(u,s) with shape u and scale

s. Therefore, the parameters qk were given by qk~(pk,uk,sk). In

the denominator, S2
p denotes the surface area of the Lp-norm unit

sphere in two dimensions [32]. During training, we first fixed

p~u~1; after initial convergence, we retrained the model with

free p and u.

The likelihood of the data under equation (7) was optimized by

alternating between optimizing Q for fixed qk, and optimizing the

qk for fixed Q. The gradient ascent on the log-likelihood of Q over

the orthogonal group used the backprojection method by Manton

[19,33,34]. Optimizing over Q yields filter pairs that resemble

quadrature pairs like in the energy model of complex cells [17,18].

Radial rescaling
Optimal contrast gain control: radial factorization. In

the following we describe the general mechanism of radial

factorization. The spherical symmetric case mostly used in this

study is obtained by setting p~2.

Radial factorization is the optimal redundancy reduction

mechanism for Lp-spherically symmetric distributed data

[11,32]. Samples from Lp-spherically symmetric distributions with

identical Lp-norm r~EyEp~
Pn

i~1 Dyi Dp
� �1

p are uniformly distrib-

uted on the Lp-sphere with that radius. A radial distribution %(r)

determines how likely it is that a data point is drawn from an Lp-

sphere with that specific radius. Since the distribution on the

sphere is uniform for any Lp-spherically symmetric distribution,

the radial distribution % determines the specific type of distribu-

Table 1. Model components of the divisive normalization
and radial factorization model: Natural image patches are
filtered by a set of linear oriented band-pass filters.

divisive normalization
model radial factorization

filtering y~Wx y~Wx

normalization
z~

kEyE
c
2
zd

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2zEyEc2

q y

EyE2
z~

F{1
xp

0F r

� �
EyEpð Þ

EyEp
y

(static case d~0 and c~2)

The filter responses are normalized and their norm is rescaled in the
normalization step.
doi:10.1371/journal.pcbi.1002889.t001
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tion. For example, p~2 and %(r)~x(r) yields an isotropic

Gaussian since the Gaussian distribution is spherically symmetric

(p~2) and has a radial x-distribution (%(r)~x(r)). One can show

that, for a fixed value of p, there is only one type of radial

distribution such that the joint distribution is factorial [13]. For

p~2 this radial distribution is the x-distribution corresponding to

a joint Gaussian distribution. For 0vp=2, the radial distribution

is a generalization of the x-distribution and the joint distribution is

the so called p-generalized Normal [35].

Radial factorization is a mapping on the Lp-norm r~EyEp of

the data points that transforms a given source Lp-spherically

symmetric distribution into a p-generalized Normal. To this

end, it first models the distribution of r with a flexible

distribution % and then nonlinearly rescales r such that the

radial distribution becomes a generalized x-distribution. This

is achieved via histogram equalization F{1
xp

0F %

� �
(EyE) where

the F denote the respective cumulative distribution functions.

On the level of joint responses y, radial factorization first

normalizes the radius to one and then rescales the data point

with the new radius:

y.
F{1

xp
0F %

� �
EyEp

� �
EyEp

y

In our case % was chosen to be a mixture of five c-distributions.

When determining the optimal redundancy reduction perfor-

mance on the population response, we set p~2 in order to use the

same norm as the divisive normalization model. Only when

estimating the redundancy of the linear filter responses, we use

p~1:3 [11].

Note that the divisive normalization model and the radial

factorization model used in this study are invariant with respect to

the choice of Q since the Euclidean norm (p~2) is invariant under

orthogonal transforms. However, the choice of Q would affect the

redundancies in the plain filter responses y in Figure 1B. But even

if we had chosen a different Q, i.e. another set of whitening filters,

the redundancy between the coefficients of y would not vary much

as previous studies have demonstrated [6,7].

Divisive normalization model and Naka-Rushton

distribution. We use the following divisive normalization

transform

EyE2.
kEyE2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2zEyE2

2

q
which is the common model for neural contrast gain control [8]

and redundancy reduction [9].

Divisive normalization acts on the Euclidean norm of the filter

responses y. Therefore, divisive normalization can only achieve

independence if it outputs a Gaussian random variable. While in

radial factorization the target and source distribution were fixed,

and the goal was to find a mapping that transforms one into the

other, we now fix the mapping to divisive normalization, the target

distribution on the normalized response z to be Gaussian (EzE2 to

be x-distributed) and search for the corresponding source

distribution that would lead to a factorial representation when

divisive normalization is applied. Since divisive normalization

saturates at k, we will actually have to use a truncated x-

distribution on EzE2. k becomes the truncation threshold. Note

that radial truncation actually introduces some dependencies,

but we keep them small by choosing the truncation threshold k

to be the 99% percentile of the radial x-distribution which is

approximately k&10:14. The 99% was chosen to keep the

target distribution close to a factorial Gaussian. However, it

could still be that another cut-off (value of k) leads to a better

redundancy reduction even though the target distribution is less

factorial for lower values of k (quantiles lower than 99%). We

made sure that this is not the case by choosing different values of

k, computing the best s via a maximum likelihood fit of a Naka-

Rushton distribution (see below), and estimating the multi-

information in the transformed outputs. We found that the

choice of k has virtually no effect on the residual multi-

infomation (it varies by +0:1% for k[½F{1
x (0:5),F{1

x (0:99)� and

takes its optimum within this interval). Therefore, we kept the

99% choice as it is most similar to the target distribution of

radial factorization.

Note also that choosing a Gaussian target distribution does not

contradict the finding that cortical firing rates are found to be

exponentially distributed [36] since each single response zi can

always be transformed again to be exponentially distributed

without changing the redundancy of z.

The distribution on r~EyE2 such that

EzE2~
kEyE2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2zEyE2

2

q
is truncated x-distributed can be derived by a simple change of

variables. In the resulting distribution

% rð Þ~ 2kns2rn{1

n

2
,
k2

2s

� �
C

n

2

� �
2sð Þ

n
2 s2zr2ð Þ

nz2
2

exp {
k2r2

2s s2zr2ð Þ

� �
,

the truncation threshold k, the half-saturation constant s, and the

scale of the x-distribution become parameters of the model. The

parameter s of the Naka-Rushton distribution controls the

variance of the corresponding Gaussian and was always chosen

such that the Gaussian was white with variance one. k was

determined by the 99%-percentile. The only remaining free

parameter of the Naka-Rushton distribution is s which simulta-

neously affects both shape and scale. is the regularized-

incomplete-gamma function which accounts for the truncation at

k. We call the distribution Naka-Rushton distribution and denote it

with n k,s,sð Þ.
To derive the distribution on EyE for which the extended

divisive normalization transformation kEyE
c
2
zdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2zEyEc2
q yields a x-

distribution, the steps are exactly the same as for the plain divisive

normalization transform above. This yields

% rð Þ~
pknr

ncz2nd{2
2 2d rczs2

� �
zcs2

� �
C

n

p

� �
s

n
p2

nzp
p rczs2ð Þ

nz2
2

|exp {
kpr

pc
2

zpd

2s s2zrcð Þ
p
2

 !

for dw0. The parameters of the distribution are now s,d,k,c and

s.

The parameters for all divisive normalization transforms were

estimated via maximum likelihood of the Naka-Rushton distribution
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on the Euclidean norms frigm
i~1~fEyiE2gm

i~1 of the filter responses

to natural image patches. As before, we did not optimize for s in the

extended Naka-Rushton distribution but fixed it such that the

corresponding Gaussian was white.

Dynamically adapting s2. For the model with dynamically

adapting s2, we first model the Euclidean norms ri~EyiE2 of the

filter responses to the patches from the simulated eye movement

data with a mixture of 500 Naka-Rushton distributions

%(r)~
X500

i~1

n(rDsi)pi,

using EM [37]. pi denotes the probability that s~si. The values

of si where chosen in 500 equidistant steps from 0:01 to 12.

How much redundancy reduction can be achieved with a

dynamically adapting s, depends on the dynamics according to

which it is selected based on the recent history. While there

might be many strategies, we chose a parsimonious one based

on the mean and the standard deviation of the posterior over

st{1. Our heuristic consists of two steps: First the mean and

the standard deviation of the posterior %(sDr) derived from the

mixture distribution is approximated with piecewise linear

functions m(r) and s(r), then we sample st used to transform rt

from a c-distribution with mean and standard deviation m(rt{1)
and s(rt{1). This strategy emphasizes that the first two

moments of the posterior are the important features for

obtaining a good st.

In more detail, we evaluated the posterior

%(si Dr)~
pin(rDsi)P500

j~1 n(rDsj)pj

:

of the mixture distribution at 100 equidistant locations between

10{12 and 35, computed the posterior mean and standard

deviation at those locations, rescaled the standard deviation by

1=
ffiffiffi
2
p

, and fitted the piecewise linear functions on the intervals

½0,1),½1,2), . . . ,½30,?) to each set of values. In the first interval, the

linear function was constraint to start at zero. From these two

functions m(r) and s(r), we computed two functions for the scale h
and the shape u of a c-distribution

u(r)~
m(r)2

s(r)2
and h(r)~

s(r)2

m(r)

via moment matching. We obtained the value st for transforming

a value rt with a Naka-Rushton function by sampling st from a c-

distribution with shape and scale determined by u(rt{1) and

h(rt{1).
Computation of percentiles for Figure 5. For the dynam-

ically adapting s2 in Figure 5, we sampled from

p(r)~

ð ð
n(rDs,k,s)c(sDu(ri),h(ri))p(ri)dsdri

and computed the percentiles based on the sampled dataset. For

the sampling procedure, we drew s from the c-distribution

c(sDu(ri),h(ri)) with shape and scale computed from ri and then

sampled r from the Naka-Rushton distribution n(rDs,k,s) with that

s. We repeated that for all ri from a test set of simulated eye

movement radii. This procedure was carried out for all pairs of

training and test sets, and the distributions fitted to them.

For the static case, we sampled data from single Naka-Rushton

distributions for different values of s and computed the percentiles

from the samples.

History-independent choice of s2. In the following, let

rt~EytE and ft~EztE be the unnormalized and normalized

responses at time t, respectively, and Hk~(rt{1,:::,rt{k) be the

recent history of responses. The underlying generative structure of

the model for temporally correlated data is the following: given a

fixed history Hk, st and rt are sampled from r(sDHk) and

r(rtDHk). Then, ft is generated from rt and st through divisive

normalization.

For strong redundancy reduction, ft should follow a truncated

x-distribution, which means that for given history Hk and st, the

unnormalized response energy rt must have a Naka-Rushton

distribution

rtDst,Hk*n(rtDst),

because normalizing this response via krt=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

t zr2
t

p
yields a

truncated x-distribution. Averaged over all histories Hk and half-

saturation constants s2
t the distribution of rt is a mixture of Naka-

Rushton distributions

rt*%(rt)~

ð ð
n(rtDst,Hk)r(st,Hk)dstdHk: ð8Þ

If st depends deterministically on Hk we obtain equation (5).

If st could be chosen independently of the preceding history the

distribution of ft would be given by

%(ft)~

ð ð ð
% ftDrt,stð Þ%(rtDHk)%(st)%(Hk)dHkdstdrt

~

ð
% ftDstð Þ%(st)dst,

where % ftDstð Þ is the marginal distribution of rt transformed with

divisive normalization and a specific value of st. Since redundancy

reduction requires %(ft) to be truncated x-distributed, st can be

chosen independently only if the truncated x-distribution can be

modelled as mixture of the different % ftDstð Þ. Since we assume

stationarity, we can drop the index t in the equation.

Multi-information estimation
We use the multi-information to quantify the statistical dependen-

cies between the filter responses y [38]. The multi-information is

the n-dimensional generalization of the mutual-information. It is

defined as the Kullback-Leibler divergence between the joint

distribution and the product of its marginals or, equivalently, the

difference between the sum of the marginal entropies and the joint

entropy

I ½Y�~DKL r(y)E P
n

i~1
ri(yi)

� �
~
Xn

i~1

H½Yi�{H½Y�: ð9Þ

The multi-information is zero if and only if the different

dimensions of the random vector Y are independent. Since the

joint entropy H½Y� is hard to estimate we employ a semi-

parametric estimate of the multi-information that is conservative

in the sense that it is downward biased.

For the marginal entropies H½Yi�, we use a jackknifed estimator

for the discrete entropy on the binned values [39]. We chose the

bin size with the heuristic proposed by Scott [40]. We obtain an
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estimate for the differential entropy by correcting with the

logarithm of the bin width (see e.g. [7]).

In order to estimate the joint entropy, we use the average log-

loss to get an upper bound

A½r̂r(y)� : ~{ log r̂r(y)h iY*r(y)~H½Y�zDKL r(y)Er̂r(y)ð Þ:

Since the average log-loss overestimates the true entropy,

replacing the joint entropy by A in equation (1) underestimates

the multi-information. Therefore, we sometimes get estimates

smaller than zero. Since the multi-information is always positive,

we set the value to zero in that case. For computing errorbars on

the multi-information estimations, we use the negative values but a

mean zero in such cases, which effectively increases the standard

deviation of the error.

Since we want commit ourselves as little as possible to a

particular model, we estimate A½r̂r(y)� by making the assumption

that y is Lp-spherically symmetric distributed but estimating

everything else with non-parametric estimators. If y is Lp-

spherically symmetric distributed, the radial component is

independent from the directional component [32] and we can

write

ĤH Y½ �~ĤH R½ �z(n{1) log rh iRzlogSp: ð10Þ

The entropy H½R� of the radial component is again estimated via a

histogram estimator. The term (n{1) log rh iR is approximated by

the empirical mean.

Putting all the equations together yields our estimator for the

multi-information under the assumption of Lp-spherically sym-

metric distributed Y

ÎI ½Y�~
Xn

i~1

ĤH½Yi�{ĤH R½ �{ (n{1)

m

Xm

j~1

log rj{logSp,

where ĤH½:� are the univariate entropies estimated via binning.

Since the optimal value of p for filter responses y to natural

image patches is approximately p&1:3 we use that value to

estimate the multi-information of y.

When estimating the multi-information of the responses z of either

divisive normalization or radial factorization, we use the fact that

I ½Z�~
Xn

i~1

H½Zi�{H½Z�~
Xn

i~1

H½Zi�{H½Y�{ log det
dz

dy

				
				


 �
Y

where
dz

dy
is the Jacobian of the normalization transformation. The

mean is estimated by averaging over data points. The determinants of

radial factorization, divisive normalization, and extended divisive

normalization are given by

det
dz

dy

				
				~ EzEn{1

p %(EyEp)

EyEn{1
p xp(EzEp)

det
dz

dy

				
				~kn s2zEyE2

2

� �{nz2
2 s2

det
dz

dy

				
				~ EzEn{1

p

EyEn{1
p

kr
c
2
zd{1

2d rczs2
� �

zcs2
� �
2 rczs2ð Þ

3
2

:

All multi-information values were computed on test data.

For the dynamically adapting model, the s for each data point

rt is sampled from a c-distribution whose parameters are

determined from the previous value rt and the posterior over s
obtained from the mixture of Naka-Rushton distributions. Since s
changes from step to step it becomes part of the representation and

should be included when computing the multi-information (i.e. the

redundancy) between the outputs z. Therefore, the redundancy for

the dynamically adapting model is measured by I Z1,:::,Zn,s½ �. For

its computation, we use that I Z1,:::,Zn,s½ �~I Z : s½ �zI Z½ �, where

I Z,s½ � is the mutual information between Z and s. In the

following, we write XDY if X*r(XDY ). Under the assumption that

both Z and ZDs are spherically symmetric distributed, we can

decompose respective random variables into the uniform (on the

sphere) and the radial part: Z~U:R and ZDs~U:RDs. This yields

I Z,s½ �~ log
r ZDsð Þr sð Þ

r Zð Þ sð Þ


 �
~ log

r ZDYð Þr sð Þ
r Zð Þ sð Þ


 �

~ log
r(U)r RDsð Þr sð Þ
r(U)r Rð Þr sð Þ


 �
~ log

r RDsð Þr sð Þ
r Rð Þr sð Þ


 �

~I R; s½ �,

which means that we can restrict ourselves to the mutual

information between the two univariate signals R and s, which

we estimate from a two-dimensional histogram with 1002 bins.

Acknowledgments

We thank P. Berens, L. Busse, S. Katzner and L. Theis for fruitful

discussions and comments on the manuscript.

Author Contributions

Conceived and designed the experiments: FS MB. Performed the

experiments: FS. Analyzed the data: FS. Contributed reagents/materi-

als/analysis tools: FS MB. Wrote the paper: FS MB.

References

1. Barlow HB (1961) Possible Principles Underlying the Transformations of

Sensory Messages. In: Rosenblith WA, editor. Sensory Communication.

Cambridge, MA: MIT Press. pp. 217–234.

2. Simoncelli EP, Olshausen BA (2003) Natural Image Statistics and Neural

Representation. Annual Review of Neuroscience 24: 1193–1216.

3. Bell AJ, Sejnowski TJ (1997) The ‘‘independent components’’ of natural scenes

are edge filters. Vision Research 37: 3327–3338.

4. Barlow HB (1989) Unsupervised Learning. Neural Computation 1: 295–311.

5. Lewicki MS, Olshausen BA (1999) Probabilistic framework for the adaptation

and comparison of image codes. Journal of the Optical Society of America A 16:

1587–1601.

6. Bethge M (2006) Factorial coding of natural images: how effective are linear

models in removing higher-order dependencies? Journal of the Optical Society

of America A 23: 1253–1268.

7. Eichhorn J, Sinz F, Bethge M (2009) Natural Image Coding in V1: How Much

Use Is Orientation Selectivity? PLoS Comput Biol 5: e1000336.

8. Heeger DJ (1992) Normalization of cell responses in cat striate cortex. Vis

Neurosci 9: 181–197.

9. Schwartz O, Simoncelli EP (2001) Natural signal statistics and sensory gain

control. Nat Neurosci 4: 819–825.

10. Carandini M, Heeger DJ (2011) Normalization as a canonical neural

computation. Nature reviews Neuroscience 13: 51–62.

Contrast Gain Control on Natural Images

PLOS Computational Biology | www.ploscompbiol.org 12 January 2013 | Volume 9 | Issue 1 | e1002889



11. Sinz F, Bethge M (2009) The Conjoint Effect of Divisive Normalization and

Orientation Selectivity on Redundancy Reduction. In: Koller D, Schuur-
mans D, Bengio Y, Bottou L, editors. Advances in neural information

processing systems 21: 22nd Annual Conference on Neural Information

Processing Systems 2008. Red Hook, NY, , USA: Curran Associates. pp.
1521–1528.

12. Lyu S, Simoncelli EP (2009) Nonlinear extraction of independent components of
natural images using radial gaussianization. Neural Computation 21: 1485–

1519.

13. Sinz F, Gerwinn S, Bethge M (2009) Characterization of the p-generalized
normal distribution. Journal of Multivariate Analysis 100: 817–820.

14. Bonds AB (1991) Temporal dynamics of contrast gain in single cells of the cat
striate cortex. Vis Neurosci 6: 239–255.

15. Hyvärinen A, Hoyer P (2000) Emergence of Phase- and Shift-Invariant Features
by Decomposition of Natural Images into Independent Feature Subspaces.

Neural Computation 12: 1705–1720.

16. Hyvärinen A, Koester U (2007) Complex cell pooling and the statistics of natural
images. Network: Computation in Neural Systems 18: 81–100.

17. Pollen D, Ronner S (1981) Phase relationships between adjacent simple cells in
the visual cortex. Science 212: 1409–1411.

18. Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception

of motion. Journal of the Optical Society of America A 2: 284–299.
19. Sinz F, Simoncelli EP, Bethge M (2009) Hierarchical Modeling of Local Image

Features through Lp-Nested Symmetric Distributions. In: Bengio Y, Schuur-
mans D, Lafferty J, Williams C, Culotta A, editors. Advances in Neural

Information Processing Systems 22: 23rd Annual Conference on Neural
Information Processing Systems 2009. Red Hook, NY, , USA: Curran

Associates. pp. 1696–1704.

20. Lyu S (2011) Dependency Reduction with Divisive Normalization: Justification
and Effectiveness. Neural Computation 23: 2942–2973.

21. Wainwright MJ, Simoncelli EP (2000) Scale mixtures of Gaussians and the
statistics of natural images. Neural Information Processing Systems 12: 855–861.

22. Wainwright MJ, Schwartz O, Simoncelli EP (2002) Natural image statistics and

divisive normalization: modeling nonlinearities and adaptation in cortical
neurons. In: Statistical theories of the brain. MIT Press. pp. 203–222.

23. Field DJ (1987) Relations between the statistics of natural images and the
response properties of cortical cells. Journal of the Optical Society of America A

4: 2379–2394.

24. Ruderman DL, Bialek W (1994) Statistics of natural images: Scaling in the

woods. Physical Review Letters 73: 814.
25. Kac M (1939) On a Characterization of the Normal Distribution. American

Journal of Mathematics 61: 726–728.

26. Brenner N, Bialek W, De Ruyter Van Steveninck R (2000) Adaptive rescaling
maximizes information transmission. Neuron 26: 695–702.

27. Wark B, Lundstrom BN, Fairhall A (2007) Sensory adaptation. Current Opinion
in Neurobiology 17: 423–429.

28. Hu M, Wang Y (2011) Rapid Dynamics of Contrast Responses in the Cat

Primary Visual Cortex. PLoS ONE 6: e25410.
29. Kienzle W, Franz MO, Schölkopf B, Wichmann FA (2009) Center-surround

patterns emerge as optimal predictors for human saccade targets. Journal of
Vision 9: 7.1–15.

30. Reinagel P, Zador AM (1999) Natural scene statistics at the centre of gaze.
Network 10: 341–350.

31. Van Hateren JH, Van Der Schaaf A (1998) Independent component filters of

natural images compared with simple cells in primary visual cortex. Proceedings
of the Royal Society B Biological Sciences 265: 359–366.

32. Gupta AK, Song D (1997) Lp-norm spherical distribution. Journal of Statistical
Planning and Inference 60: 241–260.

33. Manton JH (2002) Optimization algorithms exploiting unitary constraints.

Signal Processing, IEEE Transactions on 50: 635–650.
34. Sinz F, Bethge M (2010) Lp -Nested Symmetric Distributions. Journal of

Machine Learning Research 11: 3409–3451.
35. Goodman IR, Kotz S (1973) Multivariate theta]-generalized normal distribu-

tions. Journal of Multivariate Analysis 3: 204–219.
36. Baddeley R, Abbott LF, Booth MC, Sengpiel F, Freeman T, et al. (1997)

Responses of neurons in primary and inferior temporal visual cortices to natural

scenes. Proceedings of the Royal Society B Biological Sciences 264: 1775–1783.
37. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society
Series B Methodological 39: 1–38.

38. Perez A (1977) e-admissible simplification of the dependence structure of a set of

random variables. Kybernetika 13: 439–444.
39. Paninski L (2003) Estimation of Entropy and Mutual Information. Neural

Computation 15: 1191–1253.
40. Scott DW (1979) On optimal and data-based histograms. Biometrika 66: 605–

610.

Contrast Gain Control on Natural Images

PLOS Computational Biology | www.ploscompbiol.org 13 January 2013 | Volume 9 | Issue 1 | e1002889


