
Inference with the Universum
Jason Weston, Ronan Collobert, Fabian Sinz, Léon Bottou, Vladimir Vapnik

NEC Labs America (Princeton, NJ), Max Planck Institute for Biological Cybernetics (Tübingen, Germany)

Introduction

What is inference with the universum about?

vs. +

=

Most regularizers are agnostic to specific data distributions
•Given a data distribution P and a function class F to choose a de-

cision function from, find a function that has minimal error on the
training data and generalizes well.

• The decision function is found by means of an optimization problem,
where the empirical error is minimized together with a regularizer
that controls the generalization error.

•While the choice of F influences the regularizer and the empirical er-
ror, P effects only the empirical risk minimization: Most regularizers
are agnostic to the distribution P given by the data at hand.

How can we incorporate prior knowledge in the regularizer?
Given data (x1,y1), ...,(xm,ym) and xm+1, ...,xm+k and the set of equiva-
lence classes F = {[f1], ..., [fr]} on F :

•MAP: Define a prior P over F and choose [fi] ∈ F that has minimal
empirical error and maximises

∫
[fi]

dP(f)

•Universum [Vapnik, 1998]: Use another set U = {x∗1, ...,x∗|U|} to
measure the ”quality” of Fi (call this set Universum)

•Use of a priori information in U:
Choose a [f ∗] ∈ F that has low
empirical risk and has a maximum
number of contradictions on U, i.e.
max |{x ∈ U|∃g,h ∈ [f] : g(x)h(x)< 0}|.

• U is from the same domain and same
problem category, but not from the
same distribution.

• In contrast to semi-supervised learning, U is not from the same dis-
tribution and in contrast to the virtual support vector method or noise
injection U does not need to be labeled.

• U reflects prior knowledge about the admissible set of examples
whereas a prior over functions represents prior knowledge about the
admissible set of decision functions.

•Universum examples can be constructed or collected in many prob-
lem settings

Approximation and Implementation

Approximation of Contradiction Maximization on U

•Approximate maximization of con-
tradictions by putting x∗ ∈ U close
to the decision boundary fw,b =
〈w, ·〉+b

•A small change in fw,b will cause a
contradiction on x∗i
• Choose fw,b ∈ F with minimal real

valued output on x∗i

Implementation in Support Vector Machines: The USVM
• Set of labeled examples: L = {(x1,y1), ...,(x|L |,y|L |)}
• Set of universum examples: U= {x|L |+1, ...,x|L |+|U|}
• Express all loss functions in terms of Hinge loss Ha[t] =max{0,a−t}
•Use Hinge loss H1[y fw,b(x)] for each labeled example x ∈ L as in

standard SVM

•Use ε-insensitive loss Uε[fw,b(x)] = H−ε[fw,b(x)]+H−ε[− fw,b(x)] for
each universum example x ∈ U. Note that applying Uε[fw,b(x)] to
an example x is equivalent to applying H−ε[fw,b(x)] to two identical
copies of x with opposite labels.

•All loss functions are convex, therefore the optimization problem is
convex!

USVM primal formulation:

minimizew,b
1
2
||w||22+C

|L |

∑
i=1

H1[yi fw,b(xi)]+CU

|U|

∑
j=1

Uε[fw,b(x|L |+ j)]

USVM dual formulation:
• For i = 1, ..., |U| set

(x|L |+i,y|L |+i) = (x|L |+i,+1)
(x|L |+|U|+i,y|L |+|U|+i) = (x|L |+i,−1)

• The dual formulation is identical to the dual formulation of a standard
SVM except for the linear part of the objective function:

max
α

|L |+2|U|

∑
i=1

r iαi−
1
2

|L |+2|U|

∑
i, j=1

yiy jαiα j (xi · x j)

s.t.

0≤ αi ≤C for i = 1 . . . |L |
r i = 1 for i = 1 . . . |L |
0≤ αi ≤CU for i = |L |+1 . . . |L |+2|U|
r i =−ε for i = |L |+1 . . . |L |+2|U|
and ∑

|L |+2|U|
i=1 yi αi = 0

Experiments

MNIST

• Task on the MNIST dataset: Separate the class 5 from class 8

• Considered Universa:

(i) UNoise - images of ”random noise” by generating uniformly dis-
tributed pixel features (”null hypothesis”)

(ii) URest - the other digits 0-9 excluding 5 and 8
(iii) UGen - create an artificial image by generating each pixel according

to its discrete empirical distribution on the training set
(iv) UMean - create an artificial image by first selecting a random 5 and

a random 8 from the training set, and then constructing the mean
of these two digits

(v) Ui - class i of the remaining digits 0-9 excluding i = 5 and i = 8

• Results using universa (i)-(iv) with constant size of |U|:
Training subset size

Method 500 1000 2000 3000
SVM 1.96 1.38 0.99 0.83
UNoise-SVM 1.95 1.37 0.99 0.82
URest-SVM 1.60 1.10 0.75 0.55
UGen-SVM 1.72 1.17 0.81 0.64
UMean-SVM 1.68 0.99 0.73 0.57

• Results using universa (i)-(iv) with constant size of |L |:
Train. Number of Universum examples
examples 500 1000 3000 5000 10000
3000 0.66 0.64 0.60 0.57 0.58

• Results using universa (v) with mean correlation ρ of elements in Ui

to digits 5 and 8:

U Training subset size Correlation
all 1000 200 ρ5 ρ8

U0 0.27 0.97 3.03 0.32 0.29
U1 0.16 1.01 2.95 0.24 0.36
U2 0.21 0.94 3.21 0.24 0.34
U3 0.05 0.62 2.97 0.33 0.37
U4 0.21 0.93 3.03 0.27 0.32
U6 0.16 0.84 2.40 0.26 0.32
U7 0.16 1.08 3.23 0.25 0.30
U9 0.21 0.89 2.78 0.30 0.37

U= /0 0.21 1.19 3.03 - -

Reuters & WinMac (20 newsgroups dataset)
• Task on the Reuter dataset: Separate the class C15 from the remaining

classes in toplevel category CCAT

• Considered Universa:

– Reuters:
(vi) UM14 - class M14 from toplevel category MCAT

(vii) UMoC - mean of closest from 10 randomly sampled examples of
each class

– WinMac (20 newsgroups)
(viii) UMean - create an artificial bag of words by first selecting one

random example from each class and then constructing the mean
of those two

• Results on Reuters using universa (vi)-(vii):

Training subset size
Method 50 100 200 500 1000
SVM 21.1 13.1 11.0 8.6 7.6
UM14-SVM 15.7 12.7 10.2 8.2 7.6
UMoC-SVM 19.4 12.6 10.8 8.6 7.6

• Results on WinMac using universe (viii):
Training subset size

Method 10 25 50 75 100
SVM 45.2 31.7 20.3 14.7 11.7
UMean-SVM 33.0 24.3 15.2 12.3 11.0

AbcdEtC
•We collected a new dataset consisting of upper and lower case letters,

digits and symbols.

•Download at: http://www.nec-labs.com/∼jasonw/abcdetc/

• Task on AbcdEtc: Separate class ”a” from ”b”

• Considered universa:

(ix) ULowcase - the set of lower case let-
ters c-z

(x) UU pcase - the set of upper case let-
ters C-Z

(xi) UDigits - the set of digits
(xii) USymbols - the set of symbols

• Results on AbcdEtc using universa (ix)-(xii):
Training subset size

Method 20 50 100 150 200
SVM 9.93 5.71 5.16 4.53 3.85
ULowcase-SVM 8.75 5.09 4.21 3.89 3.39
UU pcase-SVM 8.79 5.52 4.88 3.65 2.84
UDigits-SVM 8.37 5.56 4.26 3.97 3.49
USymbols-SVM 8.62 5.75 5.17 4.40 3.67

Data Dependent Regularization

The universum algorithm can be seen as data dependent regularization
for which the choice of a specific universum determines the kind of reg-
ularizer. Certain choices of universa can recover common regularizer.
L2 Regularizers
• For recovering the isotropic L2 regularizer assume b = 0, let UL :=
{x∗k| x∗k j = δk j, k = 1, ...,n} and use quadratic loss UL2[fw,b(x∗i)] =
| fw,b(x∗i)|2 for the points in UL. Then:

|UL|

∑
i=1

UL2[fw(x∗i)] =
|UL|

∑
i=1

(w · x∗i)2 =
n

∑
k=1

w2
k = ||w||22

• For recovering the anisotropic L2 regularizer assume a universum
with mean 0 and covariance matrix C. Then:

|U|

∑
i=1

U [fw,b(x∗i)] =
|U|

∑
i=1

(w>x∗i + b)2 = |U| (w>C w + b2)

L1 Regularizer
• For recovering the linear L1 regularizer assume b = 0, use the same

universum UL as for the isotropic L2 regularizer and use L1 loss
UL1[fw,b(x∗i)] = | fw,b(x∗i)| for the points in UL. Then:

|UL|

∑
i=1

UL1[fw(x∗i)] =
|UL|

∑
i=1
|w · x∗i |=

n

∑
k=1
|wk|= ||w||1

•A Non-linear L1 regularizer is usually not possible because of the
high dimension of the feature space, but using ULw the USVM will
still perform a form of input selection even for nonlinear kernels. The
table shows results from a 20D AND and a 6D XOR toy problem each
having only 2 relevant and (n−2) noise features (n = 20,6r).

Toy problem Toy problem
Method Linear Non-Linear Method Linear Non-Linear
SVMlinear 16.0 49.2 UL1-SVMlinear 6.2 48.5
SVMpoly 15.6 23.0 UL1-SVMpoly 6.2 12.1
SVMrb f 14.4 23.8 UL1-SVMrb f 6.3 19.2

Summary and Conclusion

•We proposed an implementation of inference with an Universum as
proposed by Vapnik 1998

•Our approximation yields a convex quadratic problem, that can be
solved with standard SVM optimizers

•Universum is a method to incorporate prior knowledge about the
problem via data points not priors on functions

– Universum examples can often be constructed or easily collected
– Universum might be more intuitive than prior over functions
– The Universum makes use of additonal data like noise injection or

virtual examples but does neither require the data to be from the
same distribution nor to be labeled

– Our approximation Universum can be seen as data dependent reg-
ularizer

• Future investigations

– Effect of different universa on the choice of functions
– Relate universum to Bayes priors on functions: How to get a uni-

versum from a prior and vice versa?

