Inference with the Universum

Jason Weston, Ronan Collobert, Fabian Sinz, Léon Bottou, Vladimir Vapnik

NEC Labs America (Princeton, NJ), Max Planck Institute for Biological Cybernetics (Tübingen, Germany)

Introduction

USVM primal formulation:

minimize_{*w*,*b*}
$$\frac{1}{2} ||\mathbf{w}||_2^2 + C \sum_{i=1}^{|\mathcal{L}|} H_1[y_i f_{w,b}(x_i)] + C_{\mathfrak{U}} \sum_{j=1}^{|\mathfrak{U}|} U_{\varepsilon}[f_{w,b}(x_{|\mathcal{L}|+j})]$$

USVM dual formulation: • For $i = 1, ..., |\mathfrak{U}|$ set

> $(x_{|\mathcal{L}|+i}, y_{|\mathcal{L}|+i}) = (x_{|\mathcal{L}|+i}, +1)$ $(x_{|\mathcal{L}|+|\mathfrak{U}|+i}, y_{|\mathcal{L}|+|\mathfrak{U}|+i}) = (x_{|\mathcal{L}|+i}, -1)$

• The dual formulation is identical to the dual formulation of a standard SVM except for the linear part of the objective function:

$$|f_{1}|+2|\mathfrak{U}|$$
 1 $|f_{2}|+2|\mathfrak{U}|$

• Results on WinMac using universe (viii):

	Training subset size									
Method	10	25	50	75	100					
SVM	45.2	31.7	20.3	14.7	11.7					
\mathfrak{U}_{Mean} -SVM	33.0	24.3	15.2	12.3	11.0					

AbcdEtC

• We collected a new dataset consisting of upper and lower case letters, digits and symbols.

• Download at: http://www.nec-labs.com/~jasonw/abcdetc/

• Task on AbcdEtc: Separate class "a" from "b"

• Considered universa:

(ix) $\mathfrak{U}_{Lowcase}$ - the set of lower case let-

Most regularizers are agnostic to specific data distributions

- Given a data distribution \mathcal{P} and a function class \mathcal{F} to choose a decision function from, find a function that has minimal error on the training data and generalizes well.
- The decision function is found by means of an *optimization problem*, where the *empirical error* is minimized together with a *regularizer* that controls the generalization error.
- While the choice of \mathcal{F} influences the regularizer and the empirical error, \mathcal{P} effects only the empirical risk minimization: *Most regularizers* are agnostic to the distribution \mathcal{P} given by the data at hand.

How can we incorporate prior knowledge in the regularizer? Given data $(x_1, y_1), \dots, (x_m, y_m)$ and x_{m+1}, \dots, x_{m+k} and the set of equivalence classes $F = \{[f_1], ..., [f_r]\}$ on \mathcal{F} :

- MAP: Define a *prior* P over \mathcal{F} and choose $[f_i] \in \mathbf{F}$ that has minimal empirical error and maximises $\int_{[f_i]} dP(f)$
- Universum [Vapnik, 1998]: Use another set $\mathfrak{U} = \{x_1^*, \dots, x_{|\mathfrak{U}|}^*\}$ to measure the "quality" of F_i (call this set *Universum*)

• Use of a priori information in \mathfrak{U} : Choose a $[f^*] \in F$ that has low empirical risk and has a maximum number of contradictions on \mathfrak{U} , i.e. $\max |\{x \in \mathfrak{U} | \exists g, h \in [f] : g(x)h(x) < 0\}|.$ • It is from the *same domain* and *same* problem category, but not from the same distribution.

 $\max_{\alpha} \sum_{i=1}^{|\mathcal{L}|+2|\mathfrak{U}|} \rho_i \alpha_i - \frac{1}{2} \sum_{i=1}^{|\mathcal{L}|+2|\mathfrak{U}|} y_i y_j \alpha_i \alpha_j (x_i \cdot x_j)$

s.t.
$$\begin{cases} 0 \leq \alpha_i \leq C \quad \text{for } i = 1 \dots |\mathcal{L}| \\ \rho_i = 1 \quad \text{for } i = 1 \dots |\mathcal{L}| \\ 0 \leq \alpha_i \leq C_{\mathfrak{U}} \text{ for } i = |\mathcal{L}| + 1 \dots |\mathcal{L}| + 2|\mathfrak{U}| \\ \rho_i = -\varepsilon \quad \text{for } i = |\mathcal{L}| + 1 \dots |\mathcal{L}| + 2|\mathfrak{U}| \\ \text{and} \quad \sum_{i=1}^{|\mathcal{L}|+2|\mathfrak{U}|} y_i \alpha_i = 0 \end{cases}$$

Experiments

MNIST

• Task on the MNIST dataset: Separate the class 5 from class 8

• Considered Universa:

(i) \mathfrak{U}_{Noise} - images of "random noise" by generating uniformly distributed pixel features ("null hypothesis")

(ii) \mathfrak{U}_{Rest} - the other digits 0-9 excluding 5 and 8

- (iii) \mathfrak{U}_{Gen} create an artificial image by generating each pixel according to its discrete empirical distribution on the training set
- (iv) \mathfrak{U}_{Mean} create an artificial image by first selecting a random 5 and a random 8 from the training set, and then constructing the mean of these two digits

(v) \mathfrak{U}_i - class *i* of the remaining digits 0-9 excluding *i* = 5 and *i* = 8

1		6	H	I	5	K	L	1	N	0	P	Q	K	
-	5	6	7	8	9	,		1	?	;	:	=		ters c-z
	5	6	7	8	9	1		1	?	j	,	=	ł	(x) \mathfrak{U}_{Upcase} - the set of upper case let-
[.	5	6	7	8	9	1	í	1	1	i	8	11	1	ters C-Z
	5	6	7	8	9)		!	Ś	;	, ,	13	1	(xi) \mathfrak{U}_{Digits} - the set of digits
Ň	5	6	7	8	9	J		1	?	i		1,	-	(xii) $\mathfrak{U}_{Symbols}$ - the set of symbols

• Results on AbcdEtc using universa (ix)-(xii):

	Training subset size							
Method	20	50	100	150	200			
SVM	9.93	5.71	5.16	4.53	3.85			
$\mathfrak{U}_{Lowcase}$ -SVM	8.75	5.09	4.21	3.89	3.39			
\mathfrak{U}_{Upcase} -SVM	8.79	5.52	4.88	3.65	2.84			
U _{Digits} -SVM	8.37	5.56	4.26	3.97	3.49			
$\mathfrak{U}_{Symbols}$ -SVM	8.62	5.75	5.17	4.40	3.67			

Data Dependent Regularization

The universum algorithm can be seen as data dependent regularization for which the choice of a specific universum determines the kind of regularizer. Certain choices of universa can recover common regularizer. L₂ Regularizers

• For recovering the *isotropic* L_2 *regularizer* assume b = 0, let $\mathfrak{U}_L :=$ $\{x_k^* | x_{kj}^* = \delta_{kj}, k = 1, ..., n\}$ and use quadratic loss $U_{L_2}[f_{w,b}(x_i^*)] =$ $|f_{w,b}(x_i^*)|^2$ for the points in U_L . Then:

 $\sum_{i=1}^{|\mathfrak{U}_L|} U_{L_2}[f_w(x_i^*)] = \sum_{i=1}^{|\mathfrak{U}_L|} (w \cdot x_i^*)^2 = \sum_{k=1}^n w_k^2 = ||w||_2^2$

• For recovering the *anisotropic* L_2 regularizer assume a universum

- In contrast to semi-supervised learning, \mathfrak{U} is not from the same dis*tribution* and in contrast to the virtual support vector method or noise injection \mathfrak{U} does not need to be labeled.
- \mathfrak{U} reflects prior knowledge about the *admissible set of examples* whereas a prior over functions represents prior knowledge about the admissible set of decision functions.
- Universum examples can be *constructed* or *collected* in many problem settings

Approximation and Implementation

Approximation of Contradiction Maximization on \mathfrak{U}

- Approximate maximization of contradictions by putting $x^* \in \mathfrak{U}$ close to the decision boundary $f_{w,b} =$ $\langle \boldsymbol{w},\cdot
 angle + b$
- A small change in $f_{w,b}$ will cause a contradiction on x_i^*
- Choose $f_{w,b} \in \mathcal{F}$ with minimal real valued output on x_i^*

Implementation in Support Vector Machines: The USVM

• Set of labeled examples: $\mathcal{L} = \{(x_1, y_1), \dots, (x_{|\mathcal{L}|}, y_{|\mathcal{L}|})\}$ • Set of universum examples: $\mathfrak{U} = \{x_{|\mathcal{L}|+1}, \dots, x_{|\mathcal{L}|+|\mathfrak{U}|}\}$ • Express all loss functions in terms of Hinge loss $H_a[t] = \max\{0, a-t\}$ • Use Hinge loss $H_1[yf_{w,b}(x)]$ for each labeled example $x \in \mathcal{L}$ as in standard SVM

0.0002/200

• Results using universa (i)-(iv) with constant size of $|\mathfrak{U}|$:

	Training subset size						
Method	500	1000	2000	3000			
SVM	1.96	1.38	0.99	0.83			
\mathfrak{U}_{Noise} -SVM	1.95	1.37	0.99	0.82			
\mathfrak{U}_{Rest} -SVM	1.60	1.10	0.75	0.55			
$\mathfrak{U}_{Gen} ext{-}\mathrm{SVM}$	1.72	1.17	0.81	0.64			
\mathfrak{U}_{Mean} -SVM	1.68	0.99	0.73	0.57			

• Results using universa (i)-(iv) with constant size of $|\mathcal{L}|$:

Number of Universum examples Train. examples 500 1000 3000 5000 10000 0.66 0.64 0.60 0.57 3000 0.58

• Results using universa (v) with mean correlation ρ of elements in \mathfrak{U}_i to digits 5 and 8:

Ľ	Train	ing sub	Correlation		
	all	1000	200	ρ_5	ρ_8
\mathfrak{U}_0	0.27	0.97	3.03	0.32	0.29
\mathfrak{U}_1	0.16	1.01	2.95	0.24	0.36
\mathfrak{U}_2	0.21	0.94	3.21	0.24	0.34
\mathfrak{U}_3	0.05	0.62	2.97	0.33	0.37
\mathfrak{U}_4	0.21	0.93	3.03	0.27	0.32
\mathfrak{U}_6	0.16	0.84	2.40	0.26	0.32
\mathfrak{U}_7	0.16	1.08	3.23	0.25	0.30
Ll9	0.21	0.89	2.78	0.30	0.37
$\mathfrak{U} = \emptyset$	0.21	1.19	3.03	-	-

Reuters & WinMac (20 newsgroups dataset)

with mean 0 and covariance matrix C. Then:

$$\sum_{i=1}^{|\mathfrak{U}|} U[f_{w,b}(x_i^*)] = \sum_{i=1}^{|\mathfrak{U}|} (w^\top x_i^* + b)^2 = |\mathfrak{U}| (w^\top C w + b^2)$$

L_1 Regularizer

• For recovering the *linear* L_1 *regularizer* assume b = 0, use the same universum \mathfrak{U}_L as for the isotropic L_2 regularizer and use L_1 loss $U_{L_1}[f_{w,b}(x_i^*)] = |f_{w,b}(x_i^*)|$ for the points in \mathfrak{U}_L . Then:

$$\sum_{i=1}^{|\mathfrak{U}_L|} U_{L_1}[f_w(x_i^*)] = \sum_{i=1}^{|\mathfrak{U}_L|} |w \cdot x_i^*| = \sum_{k=1}^n |w_k| = ||w||_1$$

• A Non-linear L_1 regularizer is usually not possible because of the high dimension of the feature space, but using \mathfrak{U}_L w the \mathfrak{U} SVM will still perform a form of input selection even for nonlinear kernels. *The* table shows results from a 20D AND and a 6D XOR toy problem each having only 2 relevant and (n-2) noise features (n = 20, 6r).

	Тоу	problem		Toy problem		
Method	Linear	Non-Linear	Method	Linear	Non-Linear	
SVM _{linear}	16.0	49.2	\mathfrak{U}_{L_1} -SVM _{linear}	6.2	48.5	
SVM _{poly}	15.6	23.0	\mathfrak{U}_{L_1} -SVM _{poly}	6.2	12.1	
SVM _{<i>rbf</i>}	14.4	23.8	\mathfrak{U}_{L_1} -SVM _{rbf}	6.3	19.2	

Summary and Conclusion

• Use ε -insensitive loss $U_{\varepsilon}[f_{w,b}(x)] = H_{-\varepsilon}[f_{w,b}(x)] + H_{-\varepsilon}[-f_{w,b}(x)]$ for each universum example $x \in \mathfrak{U}$. Note that applying $U_{\varepsilon}[f_{w,b}(x)]$ to an example x is equivalent to applying $H_{-\varepsilon}[f_{w,b}(x)]$ to two identical copies of x with opposite labels.

• All loss functions are convex, therefore the optimization problem is convex!

• Task on the Reuter dataset: Separate the class C15 from the remaining classes in toplevel category CCAT

• Considered Universa:

- Reuters:

(vi) \mathfrak{U}_{M14} - class M14 from toplevel category MCAT (vii) \mathfrak{U}_{MoC} - mean of closest from 10 randomly sampled examples of each class

– WinMac (20 newsgroups)

(viii) \mathfrak{U}_{Mean} - create an artificial bag of words by first selecting one random example from each class and then constructing the mean of those two

• Results on Reuters using universa (vi)-(vii):

	Training subset size									
Method	50	100	200	500	1000					
SVM	21.1	13.1	11.0	8.6	7.6					
\mathfrak{U}_{M14} -SVM	15.7	12.7	10.2	8.2	7.6					
\mathfrak{U}_{MoC} -SVM	19.4	12.6	10.8	8.6	7.6					

• We proposed an implementation of inference with an Universum as proposed by Vapnik 1998

• Our approximation yields a *convex quadratic problem*, that can be solved with standard SVM optimizers

• Universum is a method to incorporate prior knowledge about the problem *via data points* not priors on functions

- Universum examples can often be constructed or easily collected
- Universum might be *more intuitive* than prior over functions
- The Universum makes use of additonal data like noise injection or virtual examples but does neither require the data to be from the same distribution nor to be labeled
- Our approximation Universum can be seen as *data dependent reg*ularizer

• Future investigations

- Effect of different universa on the choice of functions
- -Relate universum to Bayes priors on functions: How to get a universum from a prior and vice versa?