Journal of Statistical Software

October 2014, Volume 61, Issue 5. http://www.jstatsoft.org/

Natter: A Python Natural Image Statistics Toolbox

Fabian H. Sinz Jorn-Philipp Lies

University Tiibingen University Tiibingen

Sebastian Gerwinn Matthias Bethge

OFFIS, Oldenburg University Tiibingen
Abstract

The statistical analysis and modeling of natural images is an important branch of
statistics with applications in image signaling, image compression, computer vision, and
human perception. Because the space of all possible images is too large to be sampled
exhaustively, natural image models must inevitably make assumptions in order to stay
tractable. Subsequent model comparison can then filter out those models that best cap-
ture the statistical regularities in natural images. Proper model comparison, however,
often requires that the models and the preprocessing of the data match down to the
implementation details. Here we present the Natter, a statistical software toolbox for
natural images models, that can provide such consistency. The Natter includes powerful
but tractable baseline model as well as standardized data preprocessing steps. It has an
extensive test suite to ensure correctness of its algorithms, it interfaces to the modular
toolkit for data processing toolbox MDP, and provides simple ways to log the results of
numerical experiments. Most importantly, its modular structure can be extended by new
models with minimal coding effort, thereby providing a platform for the development and
comparison of probabilistic models for natural image data.

Keywords: natural image statistics, Ly,-spherically symmetric distributions, L,-nested sym-
metric distributions, parameter estimation, inference, sampling, Python.

1. Introduction

The statistics of natural images are studied from many perspectives and for many possible
applications. Early investigations, motivated by the need for an efficient transmission of tele-
vision signals, noticed that generic natural images exhibit robust statistical properties like
a 1/f power spectrum (Kretzmer 1952; Schreiber 1956; Deriugin 1956). In the context of

http://www.jstatsoft.org/

2 Natter: A Python Natural Image Statistics Toolbox

vision science the statistics of natural images has become the subject of increasing interest in
the late eighties and early nineties (Buchsbaum and Gottschalk 1983; Field 1987; Burton and
Moorhead 1987; Ruderman and Bialek 1994). Since then, the field of natural image statistics
has produced a variety of models and approaches ranging from modeling whole images by
Markov random fields (Besag 1986; Winkler 1995; Hosseini, Sinz, and Bethge 2010), scale
mixtures thereof (Lyu and Simoncelli 2007), or infinitely divisible random processes and dead
leaf models (Serra 1982; Jeulin, Villalobos, and Dubus 1995; Zhu, Wu, and Mumford 1997;
Mumford and Gidas 2001; Lee, Mumford, and Huang 2001; Chainais 2007), to modeling small
patches sampled from natural images using linear generative models with factorial or group
factorial hidden sources (Olshausen and Field 1996; Bell and Sejnowski 1997; Hyvérinen and
Hoyer 2000), Gaussian scale mixtures (Wainwright and Simoncelli 2000), or Boltzmann ma-
chines, deep-belief networks, product of experts and more general models with more involved
hidden structures (Hyvérinen, Hurri, and Vaeyrynen 2003; Roth and Black 2005; Osindero,
Welling, and Hinton 2006; Welling and Gehler 2005; Osindero and Hinton 2008; Karklin and
Lewicki 2008; Zoran and Weiss 2009; Ranzato and Hinton 2010; Ranzato, Krizhevsky, and
Hinton 2010).

Independent of whether the motivation for studying natural image statistics is image com-
pression, image processing, image content inference, or a better understanding of biological
sensory systems, the challenge in developing good probabilistic models stems from the fact
that even small patches of gray-scale images are too high-dimensional to be sampled exhaus-
tively: for example, the histogram for an 8 bit 3 x 3 gray-scale image has already 272 possible
states which is clearly beyond the reach of any brute-force histogram estimation. To tackle
this problem, it is therefore necessary to assume a certain structure in the design of statistical
models. This raises the problem of how to evaluate and compare the performance of different
models which implement these assumptions. In terms of probabilistic modeling, a natural
choice is to use the log-likelihood of different models for unseen test data. This approach is
equivalent to measuring the Kullback-Leibler divergence between the true and the model dis-
tribution (Kullback and Leibler 1951). Unfortunately, many statistical models proposed for
natural images have an intractable normalization constant which makes likelihood evaluation
hard or intractable. A common approach to avoid these difficulties is to use related evaluation
measures like denoising performance or — a less objective — visual inspection of samples from
the models.

An important step towards building better probabilistic models for natural images is to devise
simple tractable models that can serve as building blocks for more involved models and set
lower bounds on their performance at the same time. Possible choices for such models are the
class of Ly-spherically symmetric models and the class of L,-nested symmetric models (Gupta
and Song 1997; Sinz and Bethge 2009; Sinz, Simoncelli, and Bethge 2009b). These distribution
classes contain common models like the Gaussian, independent component analysis (ICA)
(Hyvirinen and Oja 1997; Comon 1994), and some independent subspace analysis (ISA)
models (Hyvérinen and Hoyer 2000; Hyvirinen and Koester 2007). However, they also offer
enough flexibility to outperform these special cases while still being tractable (Sinz and Bethge
2009). Apart from choosing a benchmark class of distributions, reliable model comparison
requires that preprocessing steps and models match down to the implementation details in
order to avoid occasional discrepancies in the evaluation across labs. While many authors
publish the code for their specific model, there is no general toolbox devoted to natural image
statistics that could provide such a consistency. Apart from facilitating model comparison,

Journal of Statistical Software 3

such a toolbox would also minimize the additional coding effort during the development of
new models.

Here, we describe the Natter toolbox for natural image statistics written in Python (van
Rossum et al. 2014). In short, the main goals of the Natter are to

e provide an easy to use framework for model comparison of natural image models;

e design a framework that facilitates the development of new models.
To that end, the Natter provides

e a library of implemented models for natural image statistics that provide a firm baseline
for model comparisons;

e standard operations which are typically used in a data preprocessing pipeline for natural
image modeling.

The Natter is not meant to be a comprehensive collection of all existing natural image mod-
els but provides a simple framework for integrating new models and compare it to a number
of baseline models such as independent component analysis (ICA), independent subspace
analysis (ISA), L,-spherically symmetric models, and L,-nested symmetric models that are
provided by the Natter. These classes of models are quite general so that the currently im-
plemented distributions of the Natter cover many spherically symmetric distributions such
as Gaussians and Gaussian scale mixtures (GSM), elliptically contoured distributions, L,-
spherically symmetric models such as the p-generalized normal distribution, L,-nested sym-
metric distributions, independent component analysis (ICA), independent subspace analysis
(ISA), and mixtures of the aforementioned models (see Figure 1). The key to this wide variety
of models is their modular structure. For example, each L,-spherically symmetric distribu-
tion is characterized by its radial distribution and its particular value of p which controls the
contour lines of the joint density. When setting p = 2, one obtains all spherically symmetric
distributions which contain GSMs. Setting the radial distribution to a y-distribution, one
obtains a Gaussian. Any other combination of parameters yields a different probability den-
sity. The Natter incorporates this modular structure such that new models can be explored
with minimal coding effort. To our knowledge, the Natter is the only toolbox that provides
fitting of Ly-spherically symmetric distributions in that generality, and it is the only toolbox
that allows to fit L,-nested symmetric distribution. Finally, extensive tests ensure the cor-
rectness and robustness of the quantitative results, and a comprehensive API documentation
generated with sphinx (Brandl 2014) makes it easy to use.

The paper is structured as follows: We start with a general description of the class architec-
ture. Then we describe how to use the Natter at a typical toolchain that compares different
models on natural image patches. We start with loading, sampling, and preprocessing data
from images in Section 3 and demonstrate how to train and evaluate models using examples
of increasing complexity in Section 4. Finally, we show how to add new models in Section 5,
describe nonlinear transformations and log-determinants in Section 6 and describe auxiliary
features in Section 7.

All code examples can be found in the Examples directory of the Natter. The Natter comes
with a comprehensive API documentation found under doc in the Natter directory. We
suggest to open it before proceeding to the examples below.

4 Natter: A Python Natural Image Statistics Toolbox

univariate distributions

ChiP GammaP LogNormal Gamma SkewedGaussian Delta

TModelRadial Histogram TruncatedExponentialPower MixtureOfLogNormals TruncatedGaussian ~ MixtureOfLogNormals
TruncatedGaussian ExponentialPower Kumaraswamy NakaRushton LogLogistic PCauchy

Uniform

base
istribution

transformed distributions mixture

Transformed Truncated component

mixture
component

base
distribution

radial
istribution

univariate mixture

radial

distribution gin teMixtureDistribution

radial
distribution

multivariate distributions

Dirichlet Gaussian Lp distributions

LpGeneralizedNormal MixtureOfG: ians. Lpl ymetric LpSphericallySymmetric

ProductOfExponentialPowerDistributions

mixture
component

mixture
omponent

multivariate mixture subspace

distribution

subspace

distribution kinjteMixtureDistribution

base
distribution

base
istribution

subspace
distribution

independent subspace analysis

ISA

base
istribution

linear model

CompleteLinearModel

Figure 1: Distribution modularity in the Natter: Listed objects are classes contained in the
Natter. Most implemented distributions are univariate distributions. New univariate distribu-
tions can be generated by transforming them (e.g., a Gaussian into a log-normal distribution)
or using them as components in univariate mixture distributions. Univariate distributions are
radial distributions of the L,-spherically symmetric and Lp-nested distributions, which are
multivariate distributions. Multivariate distributions can be combined in a mixture distribu-
tion, as distributions on subspaces in an ISA model, or as distributions on the filter responses
in a complete linear model. Using this modularity, the distributions in the Natter cover many
distributions that are frequently used in natural image modeling like spherically symmetric
models (including Gaussians and Gaussian scale mixtures), elliptically contoured distributions
and mixtures thereof, many L,-spherically symmetric distributions such as the p-generalized
Gaussian (which becomes ICA for natural images when combined with the complete linear
model), and Ly-nested distributions.

Journal of Statistical Software

2. General design and class hierarchy

As can be seen in Figure 2, most of the functionality of the Natter is based on
three object types: ‘natter.DataModule.Data’, ‘natter.Transforms.Transform’, and
‘natter.Distributions.Distribution’.

The object ‘natter.DataModule.Data’ holds a two-dimensional NumPy (Oliphant 2006)
array that contains the single examples as columns. We encapsulated the array in an
extra object to provide additional functions and to overload the multiplication operator
such that filters (‘Transform’ objects) can be conveniently applied to data. In addi-
tion, the ‘natter.DataModule.Data’ object maintains a history of processing steps ap-
plied to it and can also provide different representations of itself since it inherits from
‘natter.Logging.LogToken’ (see below).

All children of the ‘natter.Transforms.Transform’ implement transformations of data.
‘LinearTransform’ objects contain a matrix of filters while ‘NonlinearTransform’ objects
implement nonlinear functions applied to single data points. Both objects have corresponding
factories, that generate common transforms. The ‘natter.Transforms.Transform’ class de-
fines several abstract functions that need to be implemented by its children. New transforms
can be added without implementing these functions. However, if they are needed by the
internal mechanisms of the Natter, an exception will be raised telling the user to implement
this method.

‘Transform’ objects can be applied to data or concatenated with other transforms via the
multiplication operator. Apart from a convenient user interface, the main reason why we
encapsulated transforms in an extra object is that the ‘Transform’ objects can automatically
keep track of the log-determinant of transforms’ Jacobian. This quantity is important when
likelihoods for the original data need to be computed when a probability distribution was
fitted on transformed data. The same applies to entropy computations. While the log-
determinant of the Jacobian can still easily be computed for linear transforms, it becomes
more intricate for nonlinear transforms, where the average log-determinant of the Jacobian
is needed. When implementing new ‘NonlinearTransform’ objects, the user needs to specify
the Jacobian of the single transform. The Natter then computes the log-determinant of the
Jacobian for concatenations by using the chain rule. For ‘LinearTransform’ a specification
of the Jacobian is not necessary since it is simply the filter matrix.

‘Data’ and ‘LinearTransform’ objects both support access to elements via slicing (see the
example in Section 3).

The core of the Natter are objects in natter.Distributions which all inherit from
‘natter.Distributions.Distribution’. These objects implement probability densities on
data and their respective fitting routines. Like the ‘Transform’ class, the ‘Distribution’
class defines several abstract methods like pdf, cdf, etc. which need to be implemented by
its children. However, like for the ‘Transform’ class, new children do not need to implement
these methods. If an internal mechanism of the Natter needs them, an exception will be
raised telling the user to implement it. This means that new distributions can be generated
with minimal effort since the user implements only those methods she needs. The abstract
methods are inherited and provide meaningful error messages when the (missing) method is
called.

Finally, almost all object in the Natter inherit from ‘natter.Logging.LogToken’. This class
defines abstract methods that (when implemented) yield representations of the objects in

Figure 2:

Natter: A Python Natural Image Statistics Toolbox

Transforms

LpNestedFunction NonlinearTransform

ArraySupportChecker
Distributions

MultivariateNormal

LpGeneralizedNormal

LpSpheric

GammaP ————————————— Gamma
TruncatedGaussian
CompleteLinearModel
Uniform
Transformed
ISA
TruncatedNormal
PCauchy
Histogram
MixtureOfLogNormals
SkewedGaussian

TModelRadial

LpNestedSymmetric

3

LinearTransform > Transform

LogNormal
Dirichlet
ChiP
FiniteMixtureDistribution
Kumaraswamy
TruncatedExponentialPower
ProductOfExponentialPowerDistributions
LogLogistic
Truncated

Gaussian
MixtureOfGaussians
NakaRushton
ExponentialPower

Delta

Class hierarchy of the Natter: Almost all objects inherit from

mal/; Distribution

Svn
Git

A\

ExperimentLog L

Pylnfo

> LogToken
Link /
Data /
LogList
Paragraph
Image

Tahle

‘LogToken’ which

is used for semi-automatic generation of reports for numerical experiments (see Section 7.1).
All distributions inherit from ‘Distribution’ which defines several abstract methods imple-

mented by the children. Similarly, the ‘Transform’ object defines abstract methods for linear
and nonlinear transforms.

Journal of Statistical Software

HTML, TXT, or IXITEX. These methods are used by a semi-automatic logging module that
can generate reports for numerical experiments (see Section 7.1).

3. Data handling

3.1. Data loading

There are four ways to create a ‘Data’ object in the Natter:

1. load it from a file;
2. sample it from a collection of images;
3. sample it from an existing generative model;

4. or initialize it from a NumPy array.

In this section, we will focus on the first two options. The necessary functions are provided
by the modules DataModule.DataLoader and DataModule.DataSampler which must be im-
ported in Python.

The simplest way to load data is from an ASCII file with whitespace-separated numbers. As
a convention, each column is treated as a data sample. The DatalLoader module provides a
generic loading function that tries to guess the right data format from the file’s extension.
The datafile in the following example can be downloaded from http://www.bethgelab.org/
software/natter/.

>>> from natter.DataModule import DataLoader
>>> dat = DataLoader.load('hateren8x8_train_Nol.dat')

Custom data loading routines can easily be implemented by adding the respective function
to the DataModule.DataLoader.

Instead of loading the data from a file, the patches can directly be sampled from im-
ages via the DataSampler module. In our example, we sample 50,000 patches from the
van Hateren database (Van Hateren and Van Der Schaaf 1998). The following exam-
ple needs the *.iml images from the van Hateren database which is hosted at http:
//www.bethgelab.org/datasets/vanhateren/.

>>> from natter.DataModule import DataSampler

>>> from natter.Auxiliary import ImageUtils

>>> DATADIR = './'

>>> loadFunc = ImageUtils.loadHaterenlmage

>>> sampleFunc = DataSampler.img2PatchRand

>>> noSamples = 50000

>>> patchSize = 8

>>> mylter = DataSampler.directorylterator (DATADIR, noSamples, patchSize,
... loadFunc, sampleFunc)

>>> dat = DataSampler.sample(myIter, noSamples)

http://www.bethgelab.org/software/natter/
http://www.bethgelab.org/software/natter/
http://www.bethgelab.org/datasets/vanhateren/
http://www.bethgelab.org/datasets/vanhateren/

8 Natter: A Python Natural Image Statistics Toolbox

DataSampler.directoryIterator creates an iterator, that samples noSamples patches
evenly from all images in the specified directory. Each image is loaded with the loadFunc
function. The patches are selected from the image via the sampleFunc function. For instance,
sampleFunc could select images randomly or from regions with a specified contrast. By re-
placing one of those functions by another function with different behavior, the data acquisition
can easily be adapted to the specific needs. The module natter.DataModule.DataSampler
contains several other ways of fetching data from images.

Apart from their memory efficiency, this flexibility is the reason why we implemented sampling
from data sources via iterators in Python. We cannot foresee from which image database or
from which format future users might want to import data: For example, they may want
to draw random samples from images, simulate eye movement on images, fetch data from
internet resources, databases, or a camera. Iterators can cope with this great demand of
flexibility. The iterator simply needs to return one data sample at a time when its next ()
function is called. The creation of the ‘Data’ object is taken over by the Natter.

3.2. Preprocessing

The first preprocessing step after a ‘Data’ object has been created is usually to subtract the
pixel mean or median, to remove the DC component, and to whiten the data.

>>> from natter.Transforms import LinearTransformFactory
>>> mu = dat.center()

>>> D = dat.makeWhiteningVolumeConserving()

>>> FDCAC = LinearTransformFactory.DCAC(dat)

>>> FAC = FDCAC[1:, :]

>>> dat = FAC * dat

>>> FwPCA = LinearTransformFactory.wPCA(dat)

>>> dat = FwPCA * dat

The center method returns the mean (or median) and can also be called with a prescribed
center value, for example when the mean computed on training data should also be used to
center the test data.

The rescaling step is motivated by entropy computations which play an important role for
model comparisons. One drawback of the joint differential entropy is that it is not invariant
under rescaling of the data. In order to be able to compare entropies between different datasets
one needs to fix the scale in some way. We propose to globally rescale the data by a single
scalar such that whitening has determinant one. While the choice of rescaling is arbitrary,
this particular choice is convenient for entropy and log-likelihood computations because it
puts the joint differential entropies on a common scale. The Natter provides a method to
rescale the data such that whitening has determinant one (for further details on the rescaling
see Eichhorn, Sinz, and Bethge 2009). The method returns the singular values of the data
which can also be passed to it, for example to rescale test data with the same factor as the
training data.

While many statistical properties of natural images are quite stable, the constant part of the
image patches (the DC component) can vary drastically from image to image. Therefore,
a common preprocessing step is to remove the DC component from the patches and either
ignore it or treat it separately in further analyses. One possible way to accomplish this,

Journal of Statistical Software

is to simply subtract the constant part from each patch. However, in this case the data-
covariance matrix becomes rank-deficient. This can be undesirable e.g., if one wants to apply
whitening as another preprocessing step. Oftentimes, a more convenient way to remove the
DC component is to project the data onto the (DC-)orthogonal space. The Natter provides an
orthogonal matrix whose first row projects the data on the DC component such that the n —1
last rows live in the orthogonal complement of the DC component (see Eichhorn et al. 2009).
The advantage of projecting out the DC component with an orthogonal matrix is that the
determinant of an orthogonal matrix is one which means that it does not need to be taken
into account for likelihood evaluations on data: if x is a vectorized input patch, y = Wx
with orthogonal W, and py is a density on y, then px(x) = py (Wx) since |det W| = 1.
For the same reason, an orthogonal matrix does not change the joint entropy. The Natter
provides such a filter object via LinearTransformFactory.DCAC(dat). The first row of the
filter corresponds to the DC component, the remaining rows to the AC components. In the
example, we first created the filter, then extract the AC components, and apply the resulting
filter to data via the multiplication operator.

Linear filter objects in the Natter are ‘numpy.ndarray’ matrices that are encapsulated
as member variable W in a ‘LinearTransform’ object. The main reason why the ma-
trix W is stored in an object is to provide convenience methods on the filters and to
keep track of the log-determinant of the Jacobian (see Section 6). Like ‘Data’ objects,
‘LinearTransform’s support slicing to access rows and columns of W. The multiplication
operator for ‘LinearTransform’s is overloaded such that they can be multiplied with other
‘LinearTransform’, ‘NonlinearTransform’, and ‘Data’ objects. Depending on the participat-
ing objects, multiplication either simply multiplies the arrays or concatenates the nonlinear
function with the results form previous multiplications.

The last preprocessing step in our example is whitening. Like the DC-AC separation, the
whitening transform can be generated with the LinearTransformFactory which offers sev-
eral whitening transforms. Here, we simply choose whitening based on principal component
analysis (PCA). The Natter also offers symmetric whitening. Other whitening transforms
can easily be added by implementing a new factory method in LinearTransformFactory.

Apart from the examples above, the LinearTransformFactory module can generate many
other frequently used linear transforms. It also provides an interface to the MDP library
(see Section 7.3, Zito, Wilbert, Wiskott, and Berkes 2008). Additionally, a custom lin-
ear filter can simply be created from a ‘numpy.ndarray’ by passing it to the constructor
of ‘LinearTransform’.

4. Models

All statistical models of natural images included in the Natter can be stated as parametric
distributions. This section presents the core of the Natter, the Distributions module which
contains the parametric models.

As mentioned in the introduction and as can be seen in Figure 1, the Natter uses the mod-
ular structure of Ly-spherically symmetric and L,-nested distributions to cover a wide range
of common parametric distributions for natural images. Here, we demonstrate at a model
comparison for 8 x 8 image patches, how distribution objects can be created and estimated,
and how their quality can be assessed. We will also explain other features of data objects and

10 Natter: A Python Natural Image Statistics Toolbox

filters as we go along with the example.

We first state the whole example and then go through its elements step by step. We do
not comment on the data loading and preprocessing commands as they have been discussed
above. We also omit standard commands for plotting etc. in order to avoid clutter. The full
code can be found in the example directory.

>>> from natter.DataModule import DatalLoader

>>> from natter.Transforms import LinearTransformFactory

>>> from natter.Distributions import \
ProductOfExponentialPowerDistributions, LpSphericallySymmetric, \
CompletelLinearModel, LpGeneralizedNormal

>>> from collections import OrderedDict, defaultdict

>>>

>>> FILENAME_TRAIN = 'hateren4x4_train_Nol.dat.gz'

>>> FILENAME_TEST = 'hateren4x4_test_Nol.dat.gz'

>>>

>>> dat_train = DataLoader.load(FILENAME_TRAIN)

>>> dat_test = Dataloader.load(FILENAME_TEST)

>>>

>>> mu_train = dat_train.center()

>>> dat_test.center (mu_train)

>>>

>>> s = dat_train.makeWhiteningVolumeConserving()

>>> dat_test.makeWhiteningVolumeConserving(D = s)

>>>

>>> FDCAC = LinearTransformFactory.DCAC(dat_train)

>>> FDC = FDCAC[0, :]

>>> FAC = FDCAC[1:, :]

>>> FwPCA = LinearTransformFactory.wPCA(FAC * dat_train)

>>>

>>> dat_train = FwPCA * FAC * dat_train

>>> dat_test = FwPCA * FAC * dat_test

>>>

>>> n = dat_train.dim()

>>>

>>> q = LpSphericallySymmetric(n = n, p = 1.3)

>>> q.primary.remove('p"')

>>>

>>> models = OrderedDict ([

('factorial exponential power',
ProductOfExponentialPowerDistributions(n = n)),
(r'p-generalized Normal', LpGeneralizedNormal(n = n)),
(r'L_p-spherical', LpSphericallySymmetric(n = n)),
('complete linear model', CompletelLinearModel(n = n, q = q,
.. W = LinearTransformFactory.fastICA(dat_train)))])

>>>
>>> avg_log_loss = defaultdict(list)

Journal of Statistical Software

-=- p.d.f
|l Histogram

1.0

e
o
T

Probability
o
(=]
T

0.4

0.0 =

Figure 3: Univariate marginal of a power exponential distribution fitted to DC-zero filter
responses of natural image patches.

>>>

>>> for model, p in models.items():

p.estimate(dat_train[:, :5000])

for xtest in dat_test.bootstrap(50, dat_test.numex()):
.. avg_log_loss[model] .append(p.all(xtest))

>>> ..
>>> K = ['factorial exponential power', r'p-generalized Normal',

.. r'L_p-spherical’, 'complete linear model']

>>> bp = ax.boxplot([avg_log_loss[k] for k in K], positions = arange(len(K)))
>>> ...

>>> for i, (model, p) in enumerate (models.items()):

dat2 = p.sample(300000)

dat_train[:2, :].plot(ax = ax, plottype = 'loghist', colors = 'b',
label = 'true data')

dat2[:2, :].plot(ax = ax, plottype = 'loghist', colors = 'r',
label = 'sampled data')

>>> for i, model in enumerate([r'p-generalized Normal',
r'L_p-spherical']):
p = models[model]

.. pl'rp'].histogram(dat_test.norm(p['p']), bins = 100, ax = ax)
>>> ..
>>> F = FDC.stack(models['complete linear model']['W'] * FwPCA * FAC)
>>> F.plotFilters(ax = ax)

>>> ..

12 Natter: A Python Natural Image Statistics Toolbox

4.1. Creating the distribution objects

We use four common distributions for our comparison which we introduce briefly.

1. Factorial power exponential distribution: Single filter responses to whitening fil-
ters on natural images are well captured by exponential power distributions

py) = %;FpH exp (—'ys‘p>

1
P

(Bethge 2006; Srivastava, Lee, Simoncelli, and Zhu 2003, see also Figure 3). The
‘Product0fExponentialPowerDistributions’ object implements a factorial model for
a set of filter responses, where filter response is assumed to be independent of the other.

Di ;P
py (y) = H %exp <—|;|> .
. 3 7
sl (L)
2. p-generalized Normal distribution: The p-generalized normal distribution (Good-
man and Kotz 1973)

has power exponentially distributed marginals and is therefore tightly linked to the
above distribution. The difference is that each marginal has to have the same value
for the exponent p. It belongs to the class of Lj,-spherically symmetric distributions
and is therefore parametrized over a radial distribution on the L,-norm in the Natter
(see next distribution). We include it here to demonstrate how a distribution can
be parametrized in various ways and how the radial distribution of an L,-spherically
symmetric distribution can be used to visually assess the goodness-of-fit of a model.

py (y) = H 2511>1“p() exp (_ ’yjp

1
P

3. Ly-spherically symmetric distribution: The joint distribution of whitened natural
images is star-shaped. Therefore, an ideal class of distributions are the spherically
symmetric distributions (Gupta and Song 1997; Hyvirinen and Koester 2007; Sinz and
Bethge 2009).

Due to their special statistical structure, Ly-spherically symmetric distributions have a
generic density of the form (Gupta and Song 1997)

o (5)edlyly)

n—1)"
Iylz—2er ()

The function |y, = (>, lyi|P) /P is called Ly-norm. It determines the shape of the
contour lines of the distribution. Note that for ||y||, to be a proper norm p is required to
be at least one. However, in the context of L,-spherically symmetric distributions [|y||,
does not need to be a proper norm. In fact, since Ly-spherically symmetric distributions
are a special case of v-spherical distributions (Ferndndez, Osiewalski, and Steel 1995)
it is sufficient that [|y|, is positively homogeneous of degree one. This means that p
merely needs to be positive.

(1)

Journal of Statistical Software

Therefore, the generic parameters of an L,-spherically symmetric distribution are the
parameter p for the L,-norm and the radial distribution p. This is exactly how the
Natter implements them.

. Complete linear model: In Section 3, we demonstrated how to whiten data with the
Natter. A property of whitened data is that is stays white under orthogonal transforms.
Therefore, we can extend the above models by adding an orthogonal transform to the
parameters such that our model becomes py(x) = p(Ax) where A can be decomposed
into A = QW where W is a whitening matrix and @ € SO(n). As before, we assume
that the data has been whitened and rescaled such that whitening has determinant
one. Therefore, our model becomes px(x) = py(Qy) where y = Wx is the whitened
data. py is a base distribution that needs to be chosen. In the current example, we will
use an Ly-spherically symmetric distribution. ¢ can be estimated by gradient ascent
on the log-likelihood of the model. However, since @@ € SO(n) the optimization is
more involved. The Natter adapts a scheme by Manton (2002) where the gradient with
respect to R™*"™ is projected onto the tangent space of SO(n) and used to perform a
line search with back-projections onto SO(n).

The advantage of the ‘CompleteLinearModel’ is its generality. Depending on the base
distribution q one obtains different models that have been proposed for natural image
statistics. If q is a ‘ProductOfExponentialPowerDistributions’, then one obtains a
density model for ICA. If q is chosen such that p(y) = [[; pr(yr) where I are index
sets that form a partition of 1,...,n and the single p; are L,-spherically symmetric
one obtains a density model for ISA (Hyvérinen and Koester 2007). Setting it to an
L,-spherically symmetric distribution leads to the model in Sinz and Bethge (2009).
Using an Ly-nested symmetric distribution yields the model in Sinz et al. (2009b).
Future distributions of that form can easily be integrated by implementing new base
distributions. Since the derivative needed for the optimization can be decomposed via
the chain rule, the base distribution only needs to provide the necessary derivative
functions to be used in the ‘CompleteLinearModel’.

Now, let us look at the example in more detail. Since all distributions in the example are mul-
tivariate distributions, we need to specify the dimensionality when creating the distribution
objects. We extract it from the data vian = dat_train.dim() beforehand.

The line q = LpSphericallySymmetric(n = n, p = 1.3) creates an L,-spherically sym-
metric distribution in n dimensions and sets the p for the L,-norm to p = 1.3.

If we printed q to the prompt, the output would be

Lp-Spherically Symmetric Distribution

p: 2.0
n: 63
rp:

Gamma Distribution
s: 1.0
u: 1.0

13

14 Natter: A Python Natural Image Statistics Toolbox

Primary Parameters:[u, s]

It lists the name of the ‘Distribution’ object and a set of parameters that define a particular
distribution. All parameters are stored in a member dictionary called param. The keys are
the parameter names, the values are the parameters. Note that the parameters can also be
transforms or distributions like the radial distribution rp. In this case, the L,-spherically
distribution has a radial vy-distribution since this is the default option. However, one can
specify any other density model on R* as a radial distribution. Once it is implemented
as a child of ‘Distribution’ and provides the necessary methods it can serve as a radial
distribution of an ‘LpSphericallySymmetric’ object (see Section 5).

When a ‘Distribution’ object is created parameters can be passed to the constructor. The
standard way to do so is with named parameters as in the example before. The syntax is
identical to function calls with named parameters in Python. Another option is to call the con-
structor with a dictionary that parameter-name:parameter-value key-value pairs. Therefore,
a simple way to clone a ‘Distribution’ object is to call the constructor with the param array
of the original ‘Distribution’ object. However, each distribution also has a copy member
function that clones it.

Parameters can be obtained and set by treating the distribution like a dictionary. For example,
one could obtain the dimensionality and the value of p from q via

>>>n = q['n']
>>> p =ql'p']

It is possible to change any parameter this way although only some changes are sensible. For
example, if the dimensionality of models['factorial exponential power'] is set to 80 via
models['factorial exponential power']['n'] = 80, the list which holds the marginal
distribution would still be 63 dimensional. The ‘Distribution’ objects leave the responsibility
to keep the parameters consistent to the user.

Printing a distribution to the prompt also lists its primary parameters, which are the ones that
can be fitted to data. In situations, where the optimization can be computationally expensive,
it sometimes is a good idea to exclude certain parameters from the optimization. For example,
it is known from previous work, that p = 1.3 is a good choice for L,-spherically symmetric
distributions fitted to filter responses of natural image patches. The Natter allows to exclude
parameters from the optimization via the primary member list of ‘Distribution’ objects. By
default, this list contains all parameters that can be estimated with the distribution object.
When deleting parameter names from that list, they will not be estimated. In the example,
we exclude p from the estimation by simply deleting p from the array of primary parameters
via q.primary.remove('p').

Primary parameters are also helpful for a quick implementation of maximum likelihood estima-
tion. The ‘Distribution’ class, from which every ‘Distribution’ object inherits, defines the
abstract methods primary2array, array2primary, primaryBounds, loglik, and dldtheta.

Journal of Statistical Software

When implemented, the former two functions convert the primary parameters of an object
into a NumPy array and vice versa. The function primaryBounds provides a list of possible
bounds on the parameters, for example, when a parameter is restricted to be positive. The
function dldtheta must yield the derivative of the log-likelihood with respect to the primary
parameters at the data points passed to dldtheta. If those five functions are implemented by
a new ‘Distribution’ object, the generic estimate method of ‘Distribution’ tries to per-
form a gradient ascent on the log-likelihood. Since these functions are usually implemented
quickly, the Natter infrastructure minimizes coding effort which makes it a useful tool for
exploring new types of distributions.

Note that an interval restriction on the parameters does not handle all possible constraints:
For example, for matrices there are often no natural bounds in terms of an interval. Therefore,
the default estimate method of a ‘Distribution’ object with raise a warning to point to
that fact.

The remaining code for generating the distributions creates a dictionary with the other
distributions with the dimensionality set to n and default parameters otherwise. As men-
tioned above, we use the L,-spherically symmetric distribution q as base distribution for
the complete linear model. The orthogonal matrix from the complete linear model is ini-
tialized from a complete set of independent component analysis (ICA) filters which is a
‘LinearTransform’ object generated with the LinearTransformFactory module via W =
LinearTransformFactory.fastICA(dat_train). The function fastICA interfaces to the
MDP library for obtaining the filters.

4.2. Fitting and testing the distributions

Once the ‘Distribution’ object is setup, it is very simple to fit it to data: In our example
we loop through all distributions from the models dictionary and fit them to the first 5000
examples in the data object dat_train. Note that the data object supports slicing just like
a normal ‘numpy.ndarray’.

for model, p in models.items():
p.estimate(dat_train[:, :5000])
for xtest in dat_test.bootstrap(50, dat_test.numex()):
avg_log_loss[model] .append(p.all(xtest))

By default, each object that inherits from ‘Distribution’ has an estimate method which is
called with a ‘Data’ object as first argument. Other parameters can be specified for particular
distributions in order to control the estimation behavior. As mentioned before, the estimate
method tries to use the primary2array, array2primary, dldtheta, primaryBounds functions
to perform a gradient ascent on the log-likelihood. This default option is very convenient for a
fast implementation of new distributions. However, in certain cases, a simple gradient ascent
cannot be performed, or there are faster ways to estimate the distribution. For those cases,
the children of ‘Distribution’ have their own estimate methods.

For the complete linear model, the p of the base distribution will not be estimated since we
excluded it from the primary parameters. If that was not the case, the estimate method
would also fit p. Of course, the estimation method is computationally more expensive in this
case.

15

16 Natter: A Python Natural Image Statistics Toolbox

1.9r Model Likelihood

el == e —

Average Log-Loss [Bits/Component]

Ll — —

3k) .)) .
factorial exponential power p-generalized Normal L,-spherical complete linear model
Models

Figure 4: Average log-loss of the different models in the example. Not surprisingly, the
factorial exponential power distribution and the p-generalized Normal perform similarly. The
L,-spherically symmetric model and the complete linear model perform better by almost half
a bit per dimension.

After the model has been estimated from the data, we compute an estimate of the average
log loss (ALL), which is the negative expected log likelihood

m

ALL[p] = (~logp (x)) ~ % > —logp(xi).
=1

The Natter additionally normalizes the ALL by the dimensionality of the data and converts
the results to bits.

It is easy to show that the ALL is the entropy of the true distribution plus the Kullback-
Leibler divergence between the true distribution and the model. Since the latter is always
positive, the ALL is a true loss function that allows us to compare different models with each
other on an absolute scale.

In order to provide errorbars on the ALL we use the bootstrap iterator implemented in the
data object. Here, it samples 50 datasets from dat_test with the same number of data points,
computes the ALL for each test set, and stores the ALL in the avg_log_loss dictionary.

The next part of the example puts these values into a box plot (Figure 4). Not surprisingly,
the factorial exponential power distribution and the p-generalized Normal perform similarly.
The L,-spherically symmetric model and the complete linear model perform better by almost
half a bit per dimension. The next parts of the example now demonstrate ways to find reasons
for the difference in performance.

Journal of Statistical Software

factorial exponential power p-generalized Normal

— true data — true data
— sampled data — sampled data

L,-spherical complete linear model

— true data — true data

— sampled data

Figure 5: Contour plots of the log-histogram for samples from the various models in the ex-
ample and the training data. Not surprisingly, the contours of the factorial exponential power
distribution and the p-generalized Normal are almost identical. Due to the independence as-
sumption on the marginals, the resulting iso-density contours are too star-shaped (Simoncelli
1997; Bethge 2006; Eichhorn et al. 2009). The L,-spherically symmetric distribution and the
complete linear model capture the contour shape much better (Sinz and Bethge 2009).

4.3. Plotting two-dimensional log-contours

As a visual assessment of the goodness-of-fit, one can look at two-dimensional log-contour
plots of the original data and samples from the fitted distributions. In our example, the
relevant code to do this in the Natter is

>>> for i, (model, p) in enumerate(models.items()):

dat2 = p.sample(300000)

dat_train[:2, :].plot(ax = ax, plottype = 'loghist', colors = 'b’,
label = 'true data')

dat2[:2, :].plot(ax = ax, plottype = 'loghist', colors = 'r’,
label = 'sampled data')

17

18 Natter: A Python Natural Image Statistics Toolbox

0.025 radial distribution of p-generalized Normal
. | | -- padf
0.020} 2 : 5 : W Histogram |
! :
1 1
20'015 'l“ B S SO SRR SRR SPPPPP
X P
= 1
% : \

0.010

i Il i L
400 500 600 700
(111

0.06 radial distribution of L -spherical

-- pd.f.
- Histogram

60 70 80

Figure 6: Radial distributions of a p-generalized Normal (top) and a Ly-spherically symmetric
model with a radial v-distribution. Note that the p for the L,-norm in both cases is different.

The radial distribution of the L,-generalized Normal (a generalized x-distribution) fits less
well than the ~-distribution.

The ‘Data’ object provides a plotting methods that either generates a scatter plot or a contour
plot of the log-histogram. In the example, we first sample 300k samples from the fitted

distribution and then use these data points and the training data to generate contour plots
of the log-histogram for the first two data dimensions.

4.4. Plotting radial distributions

Apart from the contour lines, an important feature of L,-spherically symmetric models is
the radial distribution. In our example above, we visually assess the goodness-of-fit via a
histogram. To this end, we extract the radial distribution via p['rp'] as mentioned above
and feed the L,-norms of the data points with the estimated p to its histogram function.

>>> for i, model in enumerate([r'p-generalized Normal',
r'L_p-spherical']l):
p = models[model]

pl'rp'].histogram(dat_test.norm(p['p']), bins = 100, ax = ax)

Journal of Statistical Software

Figure 7: Combined DC, AC, whitening, and complete linear model filters. Since the filter
values are normalized for better contrast, the constant DC filter appears as a white patch.
The filters are similar to the Gabor like filter found with ICA (Sinz and Bethge 2009).

Figure 6 shows the resulting plots. We can see that the radial distribution of the p-generalized
Normal (a generalized x-distribution) fits much less well than the radial v-distribution of the
L,-spherically symmetric model. The L,-spherically symmetric model could probably be im-
proved further by choosing another radial distribution from the Distributions module of the
Natter. Usually, a mixture distribution yields good fits. The Natter contains a generic mix-
ture distribution object which can be used for that purpose. In that case, the L,-spherically
symmetric model would be generated via

>>> rp = FiniteMixtureDistribution(P = [Gamma(u = random.rand() * 3.,
s = random.rand() * 3.) for _ in xrange(5)])
>>> p = LpSphericallySymmetric(n = n, rp = rp)

4.5. Plotting filters

Finally, a common visual inspection method in natural image modeling is to look at the
resulting filters. One parameter of the complete linear model is the additional rotation matrix
W. Since the data has been projected on the AC components and whitened before, we need
to combine that filter matrix with the AC filters and the whitening filters and we need to
combine all these matrices to plot the net filters. The relevant code of the example is

>>> F = FDC.stack(models['complete linear model']['W'] * FwPCA * FAC)
>>> F.plotFilters(ax = ax)

Here, we extract the orthogonal matrix W from the complete linear model via
models['complete linear model']['W'], multiply it with the other filters via the
overloaded multiplication operator, and finally stack the result with the DC filter.

19

20 Natter: A Python Natural Image Statistics Toolbox

‘LinearTransform’ objects provide a plotting function for filter that takes care of reshap-
ing the vectors into patches and normalizing the patches for better contrast. The resulting
filters can be seen in Figure 7.

5. Implementation of new models

In the beginning, we emphasized that the modular structure of the distributions implemented
in the Natter allows the user to quickly explore many common distributions for natural images.
In this section, we describe the basic structure of a ‘Distribution’ object and demonstrate
how they can be implemented.

To this end, assume that we want to implement a uniform distribution within an L,-unit ball.
The corresponding radial distribution is a S-distribution

ro=1(1 — 7“)/3*1
B (a, B)

with parameters « = n and § = 1 (Sinz and Bethge 2010). Since the Natter does not contain
a (-distribution so far, we need to implement it in order to get the uniform distribution
via the ‘LpSphericallySymmetric’ distribution. We first state the class, discuss the single
components, and then demonstrate how to integrate it into the L,-spherically symmetric
distribution below.

o(r) =

from natter.Auxiliary.Utils import parseParameters
from scipy import stats

from scipy.special import digamma, beta

from natter.Distributions import Distribution
from natter.DataModule import Data

from numpy import *

class Beta(Distribution):

def __init__(self, *args, **kwargs):
param = parseParameters(args, kwargs)

self.name = 'Beta Distribution'
self.param = {'alpha':1.0, 'beta':1.0}

if param is not None:
for k in param.keys():
self.param[k] = float(param[k])
self.primary = ['alpha', 'beta']

def pdf(self, dat):
return squeeze(stats.beta.pdf(dat.X, self['alpha'], self['beta']))

def loglik(self,dat):
return log(self.pdf (dat))

Journal of Statistical Software

def sample(self,m):
return Data(stats.beta.rvs(self['alpha'], self['beta'], size = (m,)))

def primary2array(self):
ret = zeros(len(self.primary))
for ind,key in enumerate(self.primary):
ret[ind] = self.param[key]
return ret

def arrayZprimary(self, arr):
ind = 0
for ind, key in enumerate(self.primary):
self.param[key] = arr[ind]
return self

def primaryBounds (self):
return len(self.primary) * [(1le-6, None)]

def dldtheta(self, dat):
ret = zeros((len(self.primary), dat.numex()))
x = dat.X[0]
a = self['alpha']
b = self['beta']
p = self.pdf(dat)
for ind, key in enumerate(self.primary):
if key is 'alpha':
ret[ind, :] = p * (digamma(a + b) - digamma(a) + log(x))
elif key is 'beta':
ret[ind, :] = p * (digamma(a + b) - digamma(b) + log(l - x))
return ret

5.1. Class definition and constructor

Since, the S-distribution should be a child of ‘Distribution’ it inherits from it. We already
mentioned that each ‘Distribution’ object holds a member dictionary called param which
holds the necessary parameters. This dictionary is built up in the constructor via that func-
tion parseParameters. Apart from that, the object gets a name and default values for the
parameters. Parameters passed to the distribution by the user replace the default parameters
in the following for loop. Finally, we declare both parameters of the [-distribution to be
primary parameters via self.primary = [’alpha’, ’beta’].

5.2. Member functions

By inheriting from ‘Distribution’, each distribution provides a number of functions, like pdf,
cdf, sample, loglik, Initially, these function are not implemented. When called, they
raise an exception which notifies the user that this member function has not been implemented

22 Natter: A Python Natural Image Statistics Toolbox

yet. Depending on how a particular distribution is supposed to be used, many of these
functions are not needed. In the current case, we would like to sample from the distribution,
compute (log)-likelihoods, and estimate its parameters from data.

In order to provide the first two functionalities, we implement the functions pdf, loglik, and
sample, where we basically borrow the functionality from the scipy.stats module (Jones,
Oliphant, and Peterson 2001). By convention, the sample method returns a ‘Data’ object
which always holds a two-dimensional ‘numpy.ndarray’. The loglik, pdf, and cdf functions
always return one-dimensional arrays.

In order to provide the necessary methods for fitting the distribution, we need to implement
the functions primary2array, array2primary, primaryBounds, and dldtheta. The first,
converts the primary parameters into a ‘numpy.ndarray’, while the second reverses that
operation. The third provides bounds for the primary parameters as a list of tuples. In our
case, the parameters need to be positive. Therefore, we return (1e-6, None) as bounds,
where None indicates that there is no upper bound and where we use le-6 instead of 0
for numerical stability. Finally, the function dldtheta returns the derivatives of the log-
likelihood with respect to the primary parameters at each data point in dat. The return
value is an ‘numpy.ndarray’ with as many rows as primary parameters and as many columns
as data points. These four functions will be used by the estimate method inherited from the
‘Distribution’ class, which will attempt a gradient ascent on the log-likelihood with respect
to the primary parameters.

5.3. Using the S-distribution as radial distribution

We now demonstrate how to use the above ‘Beta’ distribution object as a radial distribution
in the ‘LpSphericallySymmetric’ object. Omitting the code for creating figures, axes, and
showing the plot, the relevant code is:

>>> p_true = LpSphericallySymmetric(n = 2, rp = Beta(alpha = 2., beta = 1.),

p = .5)

>>>

>>> p_est = LpSphericallySymmetric(n = 2, rp = Beta(alpha = 2, beta = 2),
p = .5)

>>> p_est.primary.remove('p')
>>> p_unest = p_est.copy()

>>>

>>> dat = p_true.sample(5000)
>>> p_est.estimate(dat)

>>>

>>> dat_false = p_unest.sample(5000)
>>> dat_est = p_est.sample(5000)
>>> ..

>>> dat.plot(ax = ax)

>>> ax.axis([-1, 1, -1, 1])

>>> ...

>>> dat_false.plot(ax = ax)

>>> ..

>>> dat_est.plot(ax = ax)

true distribution

Journal of Statistical Software

before estimation

23

after estimation

1.0p
0.5r
T 0.0 -
-0.5f
_l'o_n L L L L L L L L L L 1
-1.0 -0.5 0.0 0.5 1.0 -0.5 0.0 0.5 -0.5 0.0 0.5 1.0
Ty Ty Ty
5r :
-- pdf. -- pdf -- pdf
M Histogram BEE Histogram I Histogram
41 :
—~ 3 — —_
_= _= _=
Bl B Bl
K=t k=t K=t

[l

[l

0.2

0.4

06 08
[l

Figure 8: Uniform distribution within the Li-unit ball. The radial distribution is a 5(n, 1)

distribution (Sinz and Bethge 2010). The tOpQFOW shows samples from the joint distribution
for the true uniform distribution, an L1 -spherically symmetric distribution with a different 3-
distribution as radial distribution, and2 the joint distribution after optimizing the parameters
of the former distribution on data from the uniform distribution. The bottom row shows the
histograms of the true data with the respective radial distributions.

>>> ..

>>> p_true['rp'].histogram(dat.norm(p = p_truel['p']), ax = ax)
>>> ..

>>> p_unest['rp'].histogram(dat.norm(p = p_unest['p']), ax = ax)
>>> ...

>>> p_est['rp'].histogram(dat.norm(p = p_est['p']), ax = ax)

>>> ...

As you can see, we generate a uniform distribution within the Li-unit ball by initializing an
‘LpSphericallySymmetric’ object with the proper ‘Beta’ objec% as radial distribution. We
set p = .5 to determine the shape of the sphere, and exclude p from estimation by removing
it from the primary parameters. We also create another L,-spherically symmetric object
with a different radial S-distribution. We then sample data from the true model, and fit the

24 Natter: A Python Natural Image Statistics Toolbox

second Lj,-spherically symmetric distribution to it. Its estimate method internally calls the
estimate method of ‘Beta’ which calls the inherited estimate method of the ‘Distribution’
object which uses the methods we implemented above to fit find the right parameters. The
resulting distributions can be seen in Figure 8. As one can see, the fit is sufficiently close but
not perfect. In the case of the S-distribution this is caused by a shallow likelihood function
for particular combinations of parameters o and 3. A dedicated estimate method might
yield better results in this case. This demonstrates that a simple likelihood optimization
quickly yields acceptable, and in many cases sufficient, results which might be improved in
their accuracy and computational efficiency by replacing them with more specialized fitting
routines. The Natter offers both possibilities.

6. Nonlinear transforms and log-determinants

A factorial model does not provide a very good fit to whitening filter responses of natural
image patches (see Figures 4 and 5). This means that the filter responses still contain strong
higher order dependencies. For some applications, however, it might be desirable to have
independent features of an image. Recent research in natural image statistics, have produced
a nonlinear transform, called radial factorization or radial Gaussianization (Sinz and Bethge
2009; Lyu and Simoncelli 2009), which strongly reduces the statistical dependencies between
the single marginals. This transform can be thought of as a kind of nonlinear ICA which
first fits an arbitrary L,-spherically symmetric distribution to the joint filter responses and
subsequently rescales the radii in the L,-norm with a nonlinear function such that the new
radial distribution corresponds to a joint factorial model. It is based on the fact that for
L,-spherically symmetric distributions and a fixed value of p, there is a single type of radial
distribution (up to scale) that has independent marginals (Sinz, Gerwinn, and Bethge 2009a).
For p = 2 this distribution is isotropic multivariate Normal. For an arbitrary value of p, the
distribution is the factorial distribution with generalized Normal marginals which was already
discussed above.

The Natter implements the radial factorization as ‘NonlinearTransform’. As for the
‘LinearTransform’, the multiplication operator is overloaded. ‘NonlinearTransform’ ob-
jects can be multiplied with other ‘NonlinearTransform’ or ‘LinearTransform’ objects. In
this case, multiplication simply means concatenation. When multiplied with a ‘Data’ object,
the ‘NonlinearTransform’ is applied to the data.

Apart from radial factorization, there are several other nonlinear transforms that can be
generated by the NonlinearTransformFactory. As an example, we now demonstrate how
to visualize a two-dimensional copula for whitening responses before radial factorization and
afterwards. If the responses are independent, the copula should look uniform (see Figure 9).
This can be seen as a visual assessment of how well a given distribution fits the data.

>>> from natter.Transforms import NonlinearTransformFactory

>>> from natter.Distributions import ISA, ExponentialPower, ISA, Uniform
>>> from natter.Logging.LogTokens import Table

>>>

>>> print "Loading a simple Data module from an ascii file"

>>> FILENAME_TRAIN = 'hateren8x8_train_Nol.dat.gz'

>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>
>>>

>>>
>>>
>>>
>>>
>>>

Journal of Statistical Software 25

dat = Dataloader.load (FILENAME_TRAIN)

dat.center()
dat.makeWhiteningVolumeConserving ()

FDCAC = LinearTransformFactory.DCAC(dat)

FDC = FDCAC[O, :]

FAC = FDCAC[1:, :]

FwPCA = LinearTransformFactory.wPCA(FAC * dat)
dat = FwPCA * FAC * dat

dat.dim()

s}
I

p = LpSphericallySymmetric(n = n)

pT = ISA(P = [Uniform() for _ in xrange(n)], n = n,
S = [(i,) for i in xrange(63)])

pISA_before = ISA(P = [Histogram() for _ in xrange(n)], n = n,
S = [(i,) for i in xrange(63)])

pISA_after = ISA(P = [Histogram() for
S = [(i,) for i in xrange(63)])

in xrange(n)], n = n,

p-estimate(dat)
pISA_before.estimate(dat, bins = 5000)

FHE = NonlinearTransformFactory.MarginalHistogramEqualization(pISA_before,
pT)
dat_no_rf = FHE * dat

FRF = NonlinearTransformFactory.RadialFactorization(p)
dat2 = FRF * dat

pISA_after.estimate(dat2, bins = 5000)

FHE = NonlinearTransformFactory.MarginalHistogramEqualization(pISA_after,
pT)

dat_rf = FHE * dat2

dat_no_rf[:2, :].plot(ax = ax, color = 'k')

>>> ..

>>>

dat_rf[:2, :].plot(ax = ax, color = 'k')

>>> ..

>>>
>>>
>>>

>>>

T = Table(['before rad. fac.', 'after rad. fac.'],
['untransf. data', 'transf. data with log-det'])
T['after rad. fac.', 'untransf. data'] = pISA_after.all(dat2)
T['after rad. fac.', 'transf. data with log-det'] = pT.all(dat_rf) \
- mean (FHE.logDetJacobian(dat2)) / log(2) / dat2.dim()
T['before rad. fac.', 'transf. data with log-det'] = pT.all(dat_rf) \

26 Natter: A Python Natural Image Statistics Toolbox

. - mean((FHE * FRF).logDetJacobian(dat)) / log(2) / dat.dim()
>>> T['before rad. fac.', 'untransf. data'] = p.all(dat)

>>> print T

>>> show()

After the data has been loaded, we generate an L,-spherically symmetric model as before and
fit it to the filter responses. Additionally, we create an independent subspace (ISA) model
with one-dimensional histogram distributions on the marginals. This model is equivalent to
a density model of ICA on natural images.

The single histogram distributions will fit the marginals well, but not the joint distribution
due to dependencies between the filter responses (see Figure 5). If radial factorization makes
the marginals more independent, the ICA (ISA) model should fit better which will be reflected
in a more uniform copula.

After the L,-spherically symmetric model has been estimated, we generate a radial factoriza-
tion object from that model via NonlinearTransformFactory.RadialFactorization(p).
The object FRF is a ‘NonlinearTransform’ and can be multiplied with ‘Data’ and
‘LinearTransform’ objects.

In addition to the radial factorization object, we create two marginal histogram equalization
‘NonlinearTransform’ objects that map random variables from the ISA models into uniformly
distributed random variables.

We plot the first two marginals of the resulting data objects. Although both data sets will have
uniform marginals, the one without radial factorization shows more statistical dependencies
than the one with (see Figure 9).

‘NonlinearTransform’ objects represent functions that are applied to each data point in a
dataset. The overloaded multiplication operator makes it very convenient to apply nonlinear
functions to data and outputs of linear filters. Most importantly, however, it also tracks the
determinant of the Jacobian of a concatenated transformation. These log-determinants are
frequently needed for likelihood or entropy computations. For instance, when fitting a prob-
ability density to transformed data one needs to correct with the average log-determinant of
the Jacobian in order to compute the likelihood of the untransformed data with the estimated
model. The only information, the user needs to specify is the log-determinant of the Jacobian
of each single ‘NonlinearTransform’.

In the final part of the example, we compute likelihoods for the data in two different ways:
Either by using the original probability density or by using a probability density on the
transformed data and accounting for the transformation with the average log-determinant
of the Jacobian. Note that the two values should approximately be equal. For storing the
values we use a Table from the Logging module (see Section 7.1). The above code yields the
following output.

e e o o +
I | untransf. data | transf. data with log-det |
et o o +
| before rad. fac. | 1.446 | 1.443 |
e e L o et e +
| after rad. fac. | 2.026 | 2.026 |
e e o +

Journal of Statistical Software

Figure 9: Two marginal distributions of whitening filter responses that have been transformed
into a uniform distribution before (left) and after (right) radial factorization was applied.
Even though, the responses are not completely independent, one can easily see that radial
factorization strongly reduces the dependencies.

7. Additional features

The Natter implements a number of additional features that are useful in natural image
numerical experiments. These include logging of experiments and results, non-parametric
entropy estimation methods, and a wrapper for the modular toolkit for data processing toolkit
MDP.

7.1. Logging

For displaying the table above we used the Table ‘LogToken’ from the Logging module. In
general, each Natter object is able to print a representation of itself to the Python prompt.
However, for documenting the results of a specific numerical experiment, this output might
not be the best option. For this purpose, the Natter provides the Logging module. This
module has a member called ‘ExperimentLog’. Objects of that type can store information
and results from a numerical experiment and save it to different formats. Information is
simply added by adding strings with information to it. Hyperlinks can be added, in case the
‘ExperimentLog’ is saved as HTML file.

>>> from natter.Logging import ExperimentLog

>>> p = ExperimentLog('My fancy experiment')

>>> p += 'We sampled of data we found on the website:'
>>> p *= ('http://dataparadise.com', 'data paradise')
>>> p.write('results.html', format = 'html')

Most importantly, all objects that inherit from ‘LogToken’ can be added to ‘ExperimentLog’.
By inheriting from ‘LogToken’s, the object has to provide the method html and ascii. When
implemented, these methods must return a representation of themselves in the respective
format. While the LogTokens module additionally provides certain objects like the Table

27

28 Natter: A Python Natural Image Statistics Toolbox

used in the example above, all ‘Distribution’ objects are also LogTokens (see Figure 2).
This means that they, too, can be simply added to the ‘ExperimentLog’ object.

7.2. Entropy estimation

Many numerical experiments with natural image statistics involve the estimation of Shannon
entropy. The estimation of the joint entropy for multivariate sources is a challenging estima-
tion problem (Paninski 2003) and existing estimators can be rather involved (e.g., Hosseini
et al. 2010; Chandler and Field 2007). Therefore, the Natter only implements estimators for
univariate marginal entropies in the natter.Auxiliary.Entropy module (with one excep-
tion; see below). Estimation of marginal entropies involves choosing bin sizes, regularization,
and conversion from discrete to differential entropy (Paninski 2003; Eichhorn et al. 2009). The
Natter implements different regularization methods which are described in Paninski (2003).
When the bin size is not specified, it uses the heuristic of Scott (1979) to estimate it properly.

While non-parametric joint entropy estimation is hard, the Natter provides a more robust
possibility to estimate the entropy with parametric models by fitting a model from the Natter
to a training set and then compute the average log-loss over a test set. It can be shown that the
average log-loss equals the entropy of the data plus the Kullback-Leibler divergence between
the true and the parametric model distribution. Therefore, the average log-loss is a robust
and conservative estimate of the true joint entropy.

Using the structure of L,-spherically symmetric distributions, the Natter additionally pro-
vides a semi-parametric Monte Carlo estimator for the joint entropy in the function
natter.Auxiliary.Entropy.LpEntropy. It estimates the p of the L,-norm from the ra-
tio distribution of the marginals, which is independent of the radial distribution (Szablowski
1998), and uses the special form of the density of L,-spherically symmetric distributions (see
Equation 1) for a Monte Carlo estimator of the joint entropy.

7.3. Integration of the modular toolkit for data processing toolbox MDP

For comparability of results, it is often desirable to reuse exactly the same preprocessing chain
down to the implementation details. Therefore, it makes sense to provide a simple integration
of standard toolkits to avoid the need of reimplementing methods or transforming data from
one structure to another. To simplify the (pre-)processing of data, the Natter provides an
intuitive wrapper for the linear MDP nodes. The following example shows how to use the
wrapper to apply FastICA (Hyvérinen and Oja 1997) to the whitened data:

>>> from natter.Transforms import LinearTransformFactory

>>> U = LinearTransformFactory.mdpWrapper (dat, 'FastICA', output = 'filters',
verbose = True, whitened = True)

>>> dat_ica = U * dat

The mdpWrapper passes all named parameters but output on to the MDP node. The
parameter output defines which member of the node will be read out and returned as
‘LinearTransform’ object.

7.4. Test generators for distributions

Software verification is a demanding task, especially for probabilistic methods. The Natter

Journal of Statistical Software 29

comes with a test suite that (i) tests already defined modules and models and (ii) provides a
simple mechanism to test these basic properties for newly implemented probabilistic models.
These tests employ the standardized Natter framework to assess whether the functions pro-
vided by newly implemented distributions are correct or at least consistent with each other.
New user-defined distributions, can easily be included in this generic test suite by adding them
into the dictionary in the file config_dictionaries.py inside the Natter’s test directory. A
full syntax example is provided within the file.

The generic test suite checks the following items.

Consistency between loglik and sample method. This test checks whether the defined
likelihood is consistent with the sampling method via importance sampling. First, samples are
generated from a distribution, which is known to be consistent in its definition of sampling and
likelihood methods. Then the partition function of the distribution under test is estimated via
importance sampling. If the defined likelihood function is properly normalized, the partition
function and hence the estimate thereof should be 1. Similarly, the partition function of
the known distribution is estimated via importance sampling but this time by using samples
generated from the distribution which is tested. Note that in both directions the likelihood
function is needed for calculating the importance weights. Hence this test is not a verification
in a strict sense, but nevertheless indicates the consistency of the defined methods. Also note
that the estimate of the partition function varies between tests due to its statistical nature.
Therefore, this test might fail occasionally if the required tolerance of the estimate is not met.
The tolerance level can be adjusted for each model in the file config_dictionaries.py in
the Natter’s test directory.

Gradient checks. The gradient of the likelihood function with respect to the data and the
primary parameters is tested against the finite difference approximation to the gradient, if
these functions are provided. Again, the tolerance level can be specified individually.

Definition of a default distribution. This test ensures that the ‘Distribution’ object
generates a default distribution (generated with no arguments) which has the basic properties
as tested by the other generic tests.

Setting and getting of primary parameters. A generic consistency check between the
primary2array and array2primary functions for the primary parameters is performed. First,
the export method is called, then the obtained array is slightly perturbed and fed into the
import function. The primary parameters, which are now obtained via the export function,
are compared to the original ones. The generic test passes, if these are indeed the same and
hence the import and export functions are consistent with each other.

Each probabilistic model provided by the Natter is included in this generic test suite. However,
to test the specific requirements for these models, there is an additional unit-test file for these
models, also located in the Natter’s test directory.

8. Conclusion

We presented the natural image statistics toolbox Natter as a flexible and extensible frame-

30 Natter: A Python Natural Image Statistics Toolbox

work for preprocessing, model estimation and model comparison on natural image patches.
The Natter strongly relies on object orientation and inheritance to modularize and outsource
computational building blocks in these models. This minimizes coding and testing efforts
when integrating new models in the Natter framework. The Natter is designed such that
models can easily be added, because only those methods that are needed by the user and
other Natter features she wishes to use, must be implemented for a new object. All other fea-
tures can be added later when required. Finally, the Natter comes with an extensive battery
of tests that ensure the correct functionality and also allow to test the correctness of future
models.

The toolbox described here is only the first step towards a comprehensive toolbox for natural
images model comparison. So far, we mainly focused on providing a flexible framework
and good baseline models against which more involved models can be compared. Since the
Gaussian distribution is not a good baseline for natural image patches, we advocate L,-
spherically symmetric and L,-nested models as such a baseline.

Now that these models are established, future extensions will focus on more complex models.
Unfortunately, most of those models are trained without explicitly knowing their normaliza-
tion constant using techniques like sampling, score matching, or noise contrastive divergence
(Hyvérinen 2005; Gutmann and Hyvérinen 2012). Apart from a more difficult estimation
procedure, these models also pose a strong challenge for model comparison. Since the nor-
malization constant is unknown, the likelihood of test data must be estimated with sampling
or other techniques, adding another layer of complexity. Getting good estimates for even
small models is hard and a subject of active research (see, e.g., Theis, Gerwinn, Sinz, and
Bethge 2011). However, since the aforementioned estimation methods are generic, a modular-
ized toolbox like the Natter is a good platform to thoroughly implemented those techniques
and use them for model comparison in order to foster advancement in natural image statistics
research.

References

Bell AJ, Sejnowski TJ (1997). “The ‘Independent Components’ of Natural Scenes Are Edge
Filters.” Vision Research, 37(23), 3327-3338.

Besag J (1986). “On the Statistical Analysis of Dirty Pictures.” Journal of the Royal Statistical
Society B, 48(3), 259-302.

Bethge M (2006). “Factorial Coding of Natural Images: How Effective are Linear Models
in Removing Higher-Order Dependencies?” Journal of the Optical Society of America A,
23(6), 1253-1268.

Brandl G (2014). Sphinz: Python Documentation Generator. Python package version 1.2.2,
URL http://sphinx-doc.org/.

Buchsbaum G, Gottschalk A (1983). “Trichromacy, Opponent Colours Coding and Opti-
mum Colour Information Transmission in the Retina.” Proceedings of the Royal Society B:
Biological Sciences, 220(1218), 89-113.

http://sphinx-doc.org/

Journal of Statistical Software 31

Burton GJ, Moorhead IR (1987). “Color and Spatial Structure in Natural Scenes.” Applied
Optics, 26(1), 157-170.

Chainais P (2007). “Infinitely Divisible Cascades to Model the Statistics of Natural Images.”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(12), 2105-2119.

Chandler DM, Field DJ (2007). “Estimates of the Information Content and Dimensionality
of Natural Scenes from Proximity Distributions.” Journal of the Optical Society of America
A, 24(4), 922-941.

Comon P (1994). “Independent Component Analysis, A New Concept?” Signal Processing,
36(3), 287-314.

Deriugin NG (1956). “The Power Spectrum and the Correlation Function of the Television
Signal.” Telecommunications, 1, 1-12.

Eichhorn J, Sinz F, Bethge M (2009). “Natural Image Coding in V1: How Much Use Is
Orientation Selectivity?” PLoS Computational Biology, 5(4), e1000336.

Ferndndez C, Osiewalski J, Steel MFJ (1995). “Modeling and Inference with v-Spherical
Distributions.” Journal of the American Statistical Association, 90(432), 1331-1340.

Field DJ (1987). “Relations Between the Statistics of Natural Images and the Response
Properties of Cortical Cells.” Journal of the Optical Society of America A, 4(12), 2379—
2394.

Goodman IR, Kotz S (1973). “Multivariate #-Generalized Normal Distributions.” Journal of
Multivariate Analysis, 3(2), 204-219.

Gupta AK, Song D (1997). “L,-Norm Spherical Distribution.” Journal of Statistical Planning
and Inference, 60(2), 241-260.

Gutmann MU, Hyvérinen A (2012). “Noise-Contrastive Estimation of Unnormalized Statis-
tical Models, with Applications to Natural Image Statistics.” Journal of Machine Learning
Research, 13(Feb), 307-361.

Hosseini R, Sinz F, Bethge M (2010). “Lower Bounds on the Redundancy of Natural Images.”
Vision Research, 50(22), 2213-2222.

Hyvérinen A (2005). “Estimation of Non-Normalized Statistical Models by Score Matching.”
Journal of Machine Learning Research, 6(Apr), 695-709.

Hyvérinen A, Hoyer P (2000). “Emergence of Phase- and Shift-Invariant Features by De-
composition of Natural Images into Independent Feature Subspaces.” Neural Computation,
12(7), 1705-1720.

Hyvérinen A, Hurri J, Vaeyrynen J (2003). “Bubbles: A Unifying Framework for Low-
Level Statistical Properties of Natural Image Sequences.” Journal of the Optical Society of
America A, 20(7), 1237-1252.

Hyvérinen A, Koester U (2007). “Complex Cell Pooling and the Statistics of Natural Images.”
Network: Computation in Neural Systems, 18(2), 81-100.

32 Natter: A Python Natural Image Statistics Toolbox

Hyvirinen A, Oja E (1997). “A Fast Fixed-Point Algorithm for Independent Component
Analysis.” Neural Computation, 9(7), 1483-1492.

Jeulin D, Villalobos IT, Dubus A (1995). “Morphological Analysis of UO 2 Powder Using a
Dead Leaves Model.” Microscopy Microanalysis Microstructures, 6(4), 371-384.

Jones E, Oliphant TE, Peterson P (2001). SciPy: Open Source Scientific Tools for Python.
URL http://www.scipy.org/.

Karklin Y, Lewicki MS (2008). “Emergence of Complex Cell Properties by Learning to Gen-
eralize in Natural Scenes.” Nature, 457(7225), 83-86.

Kretzmer ER (1952). “Statistics of Television Signals.” Bell System Technical Journal, 31(2),
751-763.

Kullback S, Leibler RA (1951). “On Information and Sufficiency.” The Annals of Mathematical
Statistics, 22(1), 79-86.

Lee AB, Mumford DB, Huang J (2001). “Occlusion Models for Natural Images: A Statistical
Study of a Scale-Invariant Dead Leaves Model.” International Journal of Computer Vision,
41(1), 35-59.

Lyu S, Simoncelli EP (2007). “Statistical Modeling of Images with Fields of Gaussian Scale
Mixtures.” In Advances in Neural Information Processing Systems 19, pp. 945-952. Curran
Associates, Inc.

Lyu S, Simoncelli EP (2009). “Nonlinear Extraction of Independent Components of Natural
Images Using Radial Gaussianization.” Neural Computation, 21(6), 1485-1519.

Manton JH (2002). “Optimization Algorithms Exploiting Unitary Constraints.” IEEE Trans-
actions on Signal Processing, 50(3), 635-650.

Mumford DB, Gidas B (2001). “Stochastic Models for Generic Images.” Quarterly of Applied
Mathematics, 59(1), 85-112.

Oliphant TE (2006). Guide to NumPy. Provo. URL http://www.tramy.us/.

Olshausen BA, Field DJ (1996). “Emergence of Simple-Cell Receptive Field Properties by
Learning a Sparse Code for Natural Images.” Nature, 381(6583), 607—609.

Osindero S, Hinton G (2008). “Modeling Image Patches with a Directed Hierarchy of Markov
Random Fields.” In JC Platt, D Koller, Y Singer, S Roweis (eds.), Advances in Neural
Information Processing Systems 20, pp. 1121-1128. Curran Associates, Inc., Cambridge.

Osindero S, Welling M, Hinton GE (2006). “Topographic Product Models Applied to Natural
Scene Statistics.” Neural Computation, 18(2), 381-414.

Paninski L (2003). “Estimation of Entropy and Mutual Information.” Neural Computation,
15(6), 1191-1253.

Ranzato MA, Hinton GE (2010). “Modeling Pixel Means and Covariances Using Factorized
Third-Order Boltzmann Machines.” In IEEE Conference on Computer Vision and Pattern
Recognition, volume 9.

http://www.scipy.org/
http://www.tramy.us/

Journal of Statistical Software 33

Ranzato MA, Krizhevsky A, Hinton GE (2010). “Factored 3-Way Restricted Boltzmann
Machines For Modeling Natural Images.” In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, volume 9, pp. 621-628.

Roth S, Black MJ (2005). “Fields of Experts: A Framework for Learning Image Priors.”
In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol-
ume 2, pp. 860-867.

Ruderman DL, Bialek W (1994). “Statistics of Natural Images: Scaling in the Woods.”
Physical Review Letters, 73(6), 814.

Schreiber W (1956). “The Measurement of Third Order Probability Distributions of Television
Signals.” IRE Transactions on Information Theory, 2(3), 94-105.

Scott DW (1979). “On Optimal and Data-Based Histograms.” Biometrika, 66(3), 605-610.
Serra J (1982). Image Analysis and Mathematical Morphology, volume 1. Academic Press.

Simoncelli EP (1997). “Statistical Models for Images: Compression, Restoration and Synthe-
sis.” In Conference Record of the Thirty-First Asilomar Conference on Signals, Systems &
Computers, volume 1, pp. 673-678.

Sinz F, Bethge M (2009). “The Conjoint Effect of Divisive Normalization and Orientation
Selectivity on Redundancy Reduction.” In D Koller, D Schuurmans, Y Bengio, L. Bot-
tou (eds.), Advances in Neural Information Processing Systems 21, pp. 1521-1528. Curran
Associates, Inc.

Sinz F, Bethge M (2010). “L,-Nested Symmetric Distributions.” Journal of Machine Learning
Research, 11(Dec), 3409-3451.

Sinz F, Gerwinn S, Bethge M (2009a). “Characterization of the p-Generalized Normal Distri-
bution.” Journal of Multivariate Analysis, 100(5), 817-820.

Sinz F, Simoncelli EP, Bethge M (2009b). “Hierarchical Modeling of Local Image Features
through L,-Nested Symmetric Distributions.” In Y Bengio, D Schuurmans, J Lafferty,

C Williams, A Culotta (eds.), Advances in Neural Information Processing Systems 22, pp.
1696-1704. Curran Associates, Inc.

Srivastava A, Lee AB, Simoncelli EP, Zhu SC (2003). “On Advances in Statistical Modeling
of Natural Images.” Journal of Mathematical Imaging and Vision, 18(1), 17-33.

Szablowski PJ (1998). “Uniform Distributions on Spheres in Finite Dimensional L, and Their
Generalizations.” Journal of Multivariate Analysis, 64(2), 103-117.

Theis L, Gerwinn S, Sinz F, Bethge M (2011). “In All Likelihood, Deep Belief Is Not Enough.”
Journal of Machine Learning Research, 12(Nov), 3071-3096.

Van Hateren JH, Van Der Schaaf A (1998). “Independent Component Filters of Natural
Images Compared with Simple Cells in Primary Visual Cortex.” Proceedings of the Royal
Society B: Biological Sciences, 265(1394), 359-366.

van Rossum G, et al. (2014). Python Programming Language. Python Software Foundation.
URL http://www.python.org/.

http://www.python.org/

34 Natter: A Python Natural Image Statistics Toolbox

Wainwright MJ, Simoncelli EP (2000). “Scale Mixtures of Gaussians and the Statistics of
Natural Images.” Neural Information Processing Systems, 12(1), 855-861.

Welling M, Gehler PV (2005). “Products of “Edge-Perts”.” In Y Weiss, B Scholkopf, JC Platt
(eds.), Advances in Neural Information Processing Systems 18, pp. 419-426. MIT Press.

Winkler G (1995). Image Analysis, Random Fields and Dynamic Monte Carlo Methods,
volume 771. Springer-Verlag.

Zhu SC, Wu YN, Mumford D (1997). “Minimax Entropy Principle and Its Application to
Texture Modeling.” Neural Computation, 9(8), 1627-1660.

Zito T, Wilbert N, Wiskott L, Berkes P (2008). “Modular Toolkit for Data Processing (MDP):
A Python Data Processing Framework.” Frontiers in Neuroinformatics, 2(8), 1-7.

Zoran D, Weiss Y (2009). “The “Tree-Dependent Components” of Natural Images are Edge
Filters.” Vision Research, 37(23), 3327-38.

Affiliation:

Fabian Sinz

Department for Neuroethology, Universitéit Tiibingen
Bernstein Center for Computational Neuroscience, Tiibingen
72076 Tibingen, Germany

E-mail: fabee@bethgelab.org

URL: http://www.bethgelab.org/

Matthias Bethge

Werner Reichardt Centre for Integrative Neuroscience, University Tiibingen
Bernstein Center for Computational, Neuroscience, Tiibingen

Max Planck Institute for Biological Cybernetics, Tiibingen
Otfried-Miiller-Str. 25

72076 Tiibingen, Germany

E-mail: matthias@bethgelab.org

URL: http://www.bethgelab.org/

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/
Volume 61, Issue 5 Submitted: 2013-04-21

October 2014 Accepted: 2014-05-23

mailto:fabee@bethgelab.org
http://www.bethgelab.org/
mailto:matthias@bethgelab.org
http://www.bethgelab.org/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	General design and class hierarchy
	Data handling
	Data loading
	Preprocessing

	Models
	Creating the distribution objects
	Fitting and testing the distributions
	Plotting two-dimensional log-contours
	Plotting radial distributions
	Plotting filters

	Implementation of new models
	Class definition and constructor
	Member functions
	Using the beta-distribution as radial distribution

	Nonlinear transforms and log-determinants
	Additional features
	Logging
	Entropy estimation
	Integration of the Modular Toolkit for Data Processing (MDP)
	Test generators for distributions

	Conclusion

