Kernel Methods
We studied kernel methods and SVMs, in particular in the context of semi-supervised learning and data-dependent regularization.
Lab members are shown in this color.
2013
F. H. Sinz, A. Stöckl, J. Grewe, J. Benda
Least Informative Dimensions
Advances in Neural Information Processing Systems 26, 413-421
|
2007
F. H. Sinz
A priori knowledge from non-examples
Diploma Thesis University Tübingen
|
F. H. Sinz, O. Chapelle, A. Agarwal, B. Schölkopf
An Analysis of Inference with the Universum
Advances in Neural Information Processing Systems, 1-8
|
2006
F. Sinz, B. Schölkopf
Minimal Logical Constraint Covering Sets Minimal Logical Constraint Covering Sets
Technical Report Max Planck Institute for Biological Cybernetics
|
R. Collobert, F. Sinz, J. Weston, L. Bottou
Large Scale Transductive SVMs
Journal of Machine Learning Research, 7, 1687-1712
|
J. Weston, R. Collobert, F. Sinz, L. Bottou, V. Vapnik
Inference with the Universum
Proceedings of the 23rd international conference on Machine learning ICML 06, 1009-1016
|
R. Collobert, F. Sinz, J. Weston, L. Bottou
Trading convexity for scalability
International Conference on Machine Learning, 201-208
|
2004
F.H. Sinz, J. Quinonero-Candela, G.H. Bakir, C.E. Rasmussen, M.O. Franz
Learning Depth From Stereo
Pattern Recognition, Proc. 26th DAGM Symposium, 3175, 1-8
|